Calogero-Moser systems from associative geometry

Alberto Tacchella altacch@gmail.com

Interactions between Geometry and Physics Guarujá, SP – August 21, 2015

Outline of the talk

- 1 What is associative geometry?
- 2 A quick overview
- 3 The associative affine plane
- 4 Applications to integrable systems

Natural (?) extension of the dualities between geometry & algebra we all know and love:

$$\mathsf{Spc} \xrightarrow{\mathcal{O}} \mathsf{Alg}^{\mathrm{op}}$$

to the case where **Alg** is a category of non-commutative algebras.

Natural (?) extension of the dualities between geometry & algebra we all know and love:

$$\operatorname{\mathsf{Spc}} \xrightarrow{\mathcal{O}} \operatorname{\mathsf{Alg}}^{\operatorname{op}}$$

to the case where **Alg** is a category of non-commutative algebras. Problem: there is a huge variety of associative algebras. . . many approaches are possible.

Natural (?) extension of the dualities between geometry & algebra we all know and love:

$$\mathsf{Spc} \xrightarrow{\mathcal{O}} \mathsf{Alg}^{\mathrm{op}}$$

to the case where **Alg** is a category of non-commutative algebras. Problem: there is a huge variety of associative algebras. . . many approaches are possible.

 Generalize Gelfand duality to not-necessarily-commutative C*-algebras (Connes);

Natural (?) extension of the dualities between geometry & algebra we all know and love:

$$\operatorname{\mathsf{Spc}} \xrightarrow{\mathcal{O}} \operatorname{\mathsf{Alg}}^{\operatorname{op}}$$

to the case where **Alg** is a category of non-commutative algebras. Problem: there is a huge variety of associative algebras. . . many approaches are possible.

- Generalize Gelfand duality to not-necessarily-commutative C*-algebras (Connes);
- Concentrate on algebras where the failure of commutativity is somewhat "under control" (e.g. graded-commutative, UEA of Lie algebras, rings of differential operators);

Natural (?) extension of the dualities between geometry & algebra we all know and love:

$$\operatorname{\mathsf{Spc}} \xrightarrow{\mathcal{O}} \operatorname{\mathsf{Alg}}^{\operatorname{op}}$$

to the case where **Alg** is a category of non-commutative algebras. Problem: there is a huge variety of associative algebras. . . many approaches are possible.

- Generalize Gelfand duality to not-necessarily-commutative C*-algebras (Connes);
- Concentrate on algebras where the failure of commutativity is somewhat "under control" (e.g. graded-commutative, UEA of Lie algebras, rings of differential operators);
- Develop a theory that works for generic associative algebras
 (e.g. free ones) ⇒ associative geometry.

Let A be a finitely generated associative algebra over a field \mathbb{K} . For every $d \in \mathbb{N}$ we have the affine scheme

$$\mathsf{Rep}_d^A := \mathsf{Hom}_{\mathbb{K}\text{-}\mathbf{Alg}}(A, \mathsf{Mat}_{d,d}(\mathbb{K}))$$

and we know how to do geometry on a scheme. (Don't we?)

Let A be a finitely generated associative algebra over a field \mathbb{K} . For every $d \in \mathbb{N}$ we have the affine scheme

$$\mathsf{Rep}_d^A := \mathsf{Hom}_{\mathbb{K}\text{-}\mathbf{Alg}}(A, \mathsf{Mat}_{d,d}(\mathbb{K}))$$

and we know how to do geometry on a scheme. (Don't we?) The group $\mathrm{GL}_d(\mathbb{K})$ acts on Rep_d^A by conjugation:

$$(g.\rho)(a) := g\rho(a)g^{-1}$$

The orbits of this action are isomorphism classes of representations.

Let A be a finitely generated associative algebra over a field \mathbb{K} . For every $d \in \mathbb{N}$ we have the affine scheme

$$\mathsf{Rep}_d^A := \mathsf{Hom}_{\mathbb{K}\text{-}\mathbf{Alg}}(A, \mathsf{Mat}_{d,d}(\mathbb{K}))$$

and we know how to do geometry on a scheme. (Don't we?) The group $\mathrm{GL}_d(\mathbb{K})$ acts on Rep_d^A by conjugation:

$$(g.\rho)(a) := g\rho(a)g^{-1}$$

The orbits of this action are isomorphism classes of representations. **Kontsevich philosophy**: each scheme in the sequence $(\operatorname{Rep}_d^A)_{d\in\mathbb{N}}$ gives an increasingly better "approximation" to the (mysterious) geometry associated to A.

Let A be a finitely generated associative algebra over a field \mathbb{K} . For every $d \in \mathbb{N}$ we have the affine scheme

$$\mathsf{Rep}_d^A := \mathsf{Hom}_{\mathbb{K}\text{-}\mathbf{Alg}}(A, \mathsf{Mat}_{d,d}(\mathbb{K}))$$

and we know how to do geometry on a scheme. (Don't we?) The group $\mathrm{GL}_d(\mathbb{K})$ acts on Rep_d^A by conjugation:

$$(g.\rho)(a) := g\rho(a)g^{-1}$$

The orbits of this action are isomorphism classes of representations. **Kontsevich philosophy**: each scheme in the sequence $(\operatorname{Rep}_d^A)_{d\in\mathbb{N}}$ gives an increasingly better "approximation" to the (mysterious) geometry associated to A.

Baby version: associative-geometric objects act like "blueprints" for an infinite sequence of (commutative-)geometric objects.

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$.

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

lacksquare Mat_{n,n}(\mathbb{K});

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

- lacksquare Mat_{n,n}(\mathbb{K});
- ② $\mathbb{K}[X]$ for a smooth affine curve X;

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

- lacksquare Mat_{n,n}(\mathbb{K});
- ② $\mathbb{K}[X]$ for a smooth affine curve X;

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

- Mat_{n,n}(\mathbb{K});
- ② $\mathbb{K}[X]$ for a smooth affine curve X;
- \bigcirc $\mathbb{K}Q$, the **path algebra** of a quiver Q.

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

- Mat_{n,n}(\mathbb{K});
- ② $\mathbb{K}[X]$ for a smooth affine curve X;
- \bigcirc $\mathbb{K}Q$, the **path algebra** of a quiver Q.

Case 1 turns out to be trivial (Morita-equivalent to \mathbb{K}). Case 2 is almost trivial (there is not enough "room" for noncommutativity to kick in). Case 3 is a specialization of case 4 (loop quivers).

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

- lacksquare Mat_{n,n}(\mathbb{K});
- ② $\mathbb{K}[X]$ for a smooth affine curve X;
- \bullet $\mathbb{K}\langle x_1,\ldots,x_n\rangle$;
- \bigcirc $\mathbb{K}Q$, the **path algebra** of a quiver Q.

Case 1 turns out to be trivial (Morita-equivalent to \mathbb{K}). Case 2 is almost trivial (there is not enough "room" for noncommutativity to kick in). Case 3 is a specialization of case 4 (loop quivers). Hence for us A will usually be the path algebra of a quiver Q.

There is a notion of *formal smoothness* for (finitely generated) associative algebras; it is defined as a lifting property with respect to quotients by nilpotent ideals. Formal smoothness guarantees that the scheme Rep_d^A is smooth for every $d \in \mathbb{N}$. Which associative algebras are formally smooth?

- lacksquare Mat_{n,n}(\mathbb{K});
- ② $\mathbb{K}[X]$ for a smooth affine curve X;
- \bullet $\mathbb{K}\langle x_1,\ldots,x_n\rangle$;
- \bigcirc $\mathbb{K}Q$, the **path algebra** of a quiver Q.

Case 1 turns out to be trivial (Morita-equivalent to \mathbb{K}). Case 2 is almost trivial (there is not enough "room" for noncommutativity to kick in). Case 3 is a specialization of case 4 (loop quivers). Hence for us A will usually be the path algebra of a quiver Q. Also, $\mathbb{K}=\mathbb{C}$.

Transposing the evaluation map $\operatorname{Rep}_d^A \times A \to \operatorname{Mat}_{d,d}(\mathbb{C})$ we can build a map

$$\operatorname{\mathsf{Rep}}_d^A \to \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C}) \to \mathbb{C}$$
 $ho \mapsto
ho(a) \mapsto \operatorname{\mathsf{tr}}
ho(a)$

Transposing the evaluation map $\operatorname{\mathsf{Rep}}^A_d imes A o \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C})$ we can build a map

$$\operatorname{\mathsf{Rep}}_d^A o \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C}) o \mathbb{C}$$
 $ho \mapsto
ho(\mathsf{a}) \mapsto \operatorname{\mathsf{tr}}
ho(\mathsf{a})$

For each $a \in A$ this defines a regular function $\hat{a} \in \mathbb{C}[\operatorname{Rep}_d^A]$ which is automatically $\operatorname{GL}_d(\mathbb{C})$ -invariant.

Transposing the evaluation map $\operatorname{\mathsf{Rep}}^A_d imes A o \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C})$ we can build a map

$$\operatorname{\mathsf{Rep}}_d^A \to \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C}) \to \mathbb{C}$$
 $\rho \mapsto \rho(a) \mapsto \operatorname{\mathsf{tr}} \rho(a)$

For each $a \in A$ this defines a regular function $\hat{a} \in \mathbb{C}[\operatorname{Rep}_d^A]$ which is automatically $\operatorname{GL}_d(\mathbb{C})$ -invariant. Also, the map $a \mapsto \hat{a}$ vanishes on the linear subspace $[A,A] \subset A$ spanned by elements of the form ab-ba for some $a,b \in A$, hence it induces a map

$$rac{A}{[A,A]} o \mathbb{C}[\mathsf{Rep}_d^A]^{\mathsf{GL}_d(\mathbb{C})}$$

Transposing the evaluation map $\operatorname{Rep}_d^A \times A \to \operatorname{Mat}_{d,d}(\mathbb{C})$ we can build a map

$$\operatorname{\mathsf{Rep}}_d^A \to \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C}) \to \mathbb{C}$$
 $\rho \mapsto \rho(a) \mapsto \operatorname{\mathsf{tr}} \rho(a)$

For each $a \in A$ this defines a regular function $\hat{a} \in \mathbb{C}[\mathsf{Rep}_d^A]$ which is automatically $\mathsf{GL}_d(\mathbb{C})$ -invariant. Also, the map $a\mapsto \hat{a}$ vanishes on the linear subspace $[A, A] \subset A$ spanned by elements of the form ab - ba for some $a, b \in A$, hence it induces a map

$$rac{\mathcal{A}}{[\mathcal{A},\mathcal{A}]} o \mathbb{C}[\mathsf{Rep}_d^{\mathcal{A}}]^{\mathsf{GL}_d(\mathbb{C})}$$

Thus we can interpret A/[A, A] as the (linear!) space of regular functions on the associative space determined by A.

Vector fields, differential forms

Every derivation $\theta \colon A \to A$ induces a $\mathrm{GL}_d(\mathbb{C})$ -invariant vector field $\hat{\theta}$ on Rep_d^A . When $A = \mathbb{C}\langle x_1, \dots, x_n \rangle$ and θ is defined by $x_i \mapsto f_i(x_1, \dots, x_n)$, the corresponding vector field on Rep_d^A is $\hat{\theta}_{(X_1, \dots, X_n)} = (f_1(X_1, \dots, X_n), \dots, f_n(X_1, \dots, X_n))$

Vector fields, differential forms

What is associative geometry?

Every derivation $\theta \colon A \to A$ induces a $\mathrm{GL}_d(\mathbb{C})$ -invariant vector field $\hat{\theta}$ on Rep_d^A . When $A = \mathbb{C}\langle x_1, \dots, x_n \rangle$ and θ is defined by $x_i \mapsto f_i(x_1, \dots, x_n)$, the corresponding vector field on Rep_d^A is

$$\hat{\theta}_{(X_1,\ldots,X_n)}=(f_1(X_1,\ldots,X_n),\ldots,f_n(X_1,\ldots,X_n))$$

Kähler differentials: A-bimodule $\Omega^1(A) \simeq A \otimes \bar{A}$ (where $\bar{A} := A/\mathbb{C}$) equipped with a derivation $d : A \to \Omega^1(A)$ defined by $a \mapsto 1 \otimes \bar{a}$. For example when A is free an element like $\alpha = f \otimes \bar{x}_1 \in \Omega^1(A)$ corresponds to the differential form on Rep_d^A

$$\hat{\alpha}_{(X_1,\ldots,X_n)} = \operatorname{tr} f(X_1,\ldots,X_n) dX_1$$

Every derivation $\theta \colon A \to A$ induces a $\operatorname{GL}_d(\mathbb{C})$ -invariant vector field $\hat{\theta}$ on Rep_d^A . When $A = \mathbb{C}\langle x_1, \dots, x_n \rangle$ and θ is defined by $x_i \mapsto f_i(x_1, \dots, x_n)$, the corresponding vector field on Rep_d^A is

$$\hat{\theta}_{(X_1,\ldots,X_n)}=(f_1(X_1,\ldots,X_n),\ldots,f_n(X_1,\ldots,X_n))$$

Kähler differentials: A-bimodule $\Omega^1(A) \simeq A \otimes \bar{A}$ (where $\bar{A} := A/\mathbb{C}$) equipped with a derivation $d: A \to \Omega^1(A)$ defined by $a \mapsto 1 \otimes \bar{a}$. For example when A is free an element like $\alpha = f \otimes \bar{x}_1 \in \Omega^1(A)$ corresponds to the differential form on Rep_d^A

$$\hat{\alpha}_{(X_1,\ldots,X_n)} = \operatorname{tr} f(X_1,\ldots,X_n) dX_1$$

The map $\alpha \mapsto \hat{\alpha}$ vanishes on the linear subspace $[A, \Omega^1(A)]$, so it makes sense to consider instead

$$\mathsf{DR}^1(A) = \frac{\Omega^1(A)}{[A,\Omega^1(A)]}$$

as the linear space of differential forms on A.

One can extend in a universal way the pair $(\Omega^1(A), d)$ to a dg-algebra $(\Omega^{\bullet}(A), d)$. Concretely, $\Omega^n(A) \simeq A \otimes \bar{A} \otimes \cdots \otimes \bar{A}$ so that an element $\omega \in \Omega^n(A)$ can be written as $a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n$.

One can extend in a universal way the pair $(\Omega^1(A), d)$ to a dg-algebra $(\Omega^{\bullet}(A), d)$. Concretely, $\Omega^n(A) \simeq A \otimes \bar{A} \otimes \cdots \otimes \bar{A}$ so that an element $\omega \in \Omega^n(A)$ can be written as $a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n$. Let us define the Karoubi de Rham complex as

$$\mathsf{DR}^{\bullet}(A) := \frac{\Omega^{\bullet}(A)}{[\Omega^{\bullet}(A), \Omega^{\bullet}(A)]}$$

where $[a, b] = ab - (-1)^{|a||b|}ba$ is the *graded* commutator.

One can extend in a universal way the pair $(\Omega^1(A), d)$ to a dg-algebra $(\Omega^{\bullet}(A), d)$. Concretely, $\Omega^{n}(A) \simeq A \otimes \bar{A} \otimes \cdots \otimes \bar{A}$ so that an element $\omega \in \Omega^n(A)$ can be written as $a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n$. Let us define the Karoubi de Rham complex as

$$\mathsf{DR}^{\bullet}(A) := \frac{\Omega^{\bullet}(A)}{[\Omega^{\bullet}(A), \Omega^{\bullet}(A)]}$$

where $[a, b] = ab - (-1)^{|a||b|}ba$ is the graded commutator. Associative p-forms live in $DR^{\bullet}(A)$ and induce p-forms on Rep_d^A . In the free case, if we take for instance $\omega = f \otimes \bar{x}_2 \otimes \bar{x}_1 \in \Omega^2(A)$ then $[\omega] \in DR^2(A)$ corresponds to

$$\hat{\omega}_{(X_1,\ldots,X_n)} = \operatorname{tr}(f(X_1,\ldots,X_n) dX_2 \wedge dX_1)$$

What is associative geometry?

One can extend in a universal way the pair $(\Omega^1(A), d)$ to a dg-algebra $(\Omega^{\bullet}(A), d)$. Concretely, $\Omega^{n}(A) \simeq A \otimes \bar{A} \otimes \cdots \otimes \bar{A}$ so that an element $\omega \in \Omega^n(A)$ can be written as $a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n$. Let us define the Karoubi de Rham complex as

$$\mathsf{DR}^{\bullet}(A) := \frac{\Omega^{\bullet}(A)}{[\Omega^{\bullet}(A), \Omega^{\bullet}(A)]}$$

where $[a, b] = ab - (-1)^{|a||b|}ba$ is the graded commutator. Associative p-forms live in $DR^{\bullet}(A)$ and induce p-forms on $Rep_{\mathcal{A}}^{A}$. In the free case, if we take for instance $\omega = f \otimes \bar{x}_2 \otimes \bar{x}_1 \in \Omega^2(A)$ then $[\omega] \in DR^2(A)$ corresponds to

$$\hat{\omega}_{(X_1,\ldots,X_n)} = \operatorname{tr}(f(X_1,\ldots,X_n) dX_2 \wedge dX_1)$$

In fact we can define a whole Cartan calculus on $DR^{\bullet}(A)$, that is a degree -1 "interior product" i_{θ} and a degree 0 "Lie derivative" \mathcal{L}_{θ} such that $\mathcal{L}_{\theta} = [d, i_{\theta}]$. This makes it possible to develop a symplectic geometry for associative spaces.

p-vectors

Suppose $A=\mathbb{C}Q$. Let \overline{Q} be the *double* of Q, obtained by adding for each arrow x in Q an arrow ∂_x going in the opposite direction. We grade the path algebra $\mathbb{C}\overline{Q}$ by the number of ∂ -arrows and define

$$\mathcal{V}^{ullet}(A) := rac{\mathbb{C}\overline{Q}}{[\mathbb{C}\overline{Q},\mathbb{C}\overline{Q}]}$$

where again $[\xi,\eta]=\xi\eta-(-1)^{|\xi||\eta|}\eta\xi.$

p-vectors

Suppose $A = \mathbb{C}Q$. Let Q be the *double* of Q, obtained by adding for each arrow x in Q an arrow ∂_x going in the opposite direction. We grade the path algebra $\mathbb{C}\overline{Q}$ by the number of ∂ -arrows and define

$$\mathcal{V}^{ullet}(A) := \frac{\mathbb{C}Q}{[\mathbb{C}\overline{Q},\mathbb{C}\overline{Q}]}$$

where again $[\xi, \eta] = \xi \eta - (-1)^{|\xi||\eta|} \eta \xi$.

Associative p-vectors live in $\mathcal{V}^{\bullet}(A)$ and induce p-vectors on Rep_d. For instance a path $\xi = f \partial_{x_2} g \partial_{x_1}$ in $\mathbb{C}\overline{Q}$ corresponds to

$$\hat{\xi}_{(X_1,\ldots,X_n)} = \operatorname{tr}(f(X_1,\ldots,X_n) \frac{\partial}{\partial X_2} \wedge g(X_1,\ldots,X_n) \frac{\partial}{\partial X_1})$$

p-vectors

Suppose $A = \mathbb{C}Q$. Let \overline{Q} be the double of Q, obtained by adding for each arrow x in Q an arrow ∂_x going in the opposite direction. We grade the path algebra $\mathbb{C}\overline{Q}$ by the number of ∂ -arrows and define

$$\mathcal{V}^{ullet}(A) := rac{\mathbb{C}\overline{Q}}{[\mathbb{C}\overline{Q},\mathbb{C}\overline{Q}]}$$

where again $[\xi, \eta] = \xi \eta - (-1)^{|\xi||\eta|} \eta \xi$.

Associative p-vectors live in $\mathcal{V}^{\bullet}(A)$ and induce p-vectors on $\operatorname{Rep}_{d}^{A}$. For instance a path $\xi = f \partial_{x_2} g \partial_{x_1}$ in $\mathbb{C} \overline{Q}$ corresponds to

$$\hat{\xi}_{(X_1,\ldots,X_n)} = \operatorname{tr}(f(X_1,\ldots,X_n) \frac{\partial}{\partial X_2} \wedge g(X_1,\ldots,X_n) \frac{\partial}{\partial X_1})$$

We can also define a Schouten bracket

$$[\mathcal{V}^p(A),\mathcal{V}^q(A)]\subseteq\mathcal{V}^{p+q-1}(A)$$

corresponding to the usual one on Rep_d^A . This makes it possible to develop a Poisson geometry for associative spaces.

An example: the associative plane

Let us consider $A=\mathbb{C}\langle x,y\rangle$, the "associative affine plane". $\operatorname{Rep}_d^A=\operatorname{Mat}_{d,d}(\mathbb{C})\oplus\operatorname{Mat}_{d,d}(\mathbb{C})$; its coordinate algebra is a polynomial ring in the $2d^2$ indeterminates X_{ij},Y_{ij} $(i,j=1\dots d)$.

An example: the associative plane

Let us consider $A = \mathbb{C}\langle x,y \rangle$, the "associative affine plane". $\operatorname{\mathsf{Rep}}_d^A = \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C}) \oplus \operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C})$; its coordinate algebra is a polynomial ring in the $2d^2$ indeterminates X_{ij}, Y_{ij} $(i,j=1\ldots d)$. Regular functions on A are necklace words in the letters x and y

$$xy = yx \rightsquigarrow \varphi(X, Y) = \operatorname{tr} XY$$
 $xyxy \rightsquigarrow \varphi(X, Y) = \operatorname{tr} XYXY$

An example: the associative plane

Let us consider $A=\mathbb{C}\langle x,y\rangle$, the "associative affine plane". $\operatorname{Rep}_d^A=\operatorname{Mat}_{d,d}(\mathbb{C})\oplus\operatorname{Mat}_{d,d}(\mathbb{C})$; its coordinate algebra is a polynomial ring in the $2d^2$ indeterminates X_{ij},Y_{ij} $(i,j=1\ldots d)$. Regular functions on A are necklace words in the letters x and y

$$xy = yx \leadsto \varphi(X, Y) = \operatorname{tr} XY$$
 $xyxy \leadsto \varphi(X, Y) = \operatorname{tr} XYXY$

Vector fields on A are derivations $\theta: A \to A$; if $\theta(x,y) = (f_1, f_2)$ then $\theta \leadsto \hat{\theta}_{(X,Y)} = (f_1(X,Y), f_2(X,Y))$

An example: the associative plane

Let us consider $A=\mathbb{C}\langle x,y\rangle$, the "associative affine plane". $\operatorname{Rep}_d^A=\operatorname{Mat}_{d,d}(\mathbb{C})\oplus\operatorname{Mat}_{d,d}(\mathbb{C})$; its coordinate algebra is a polynomial ring in the $2d^2$ indeterminates X_{ij},Y_{ij} $(i,j=1\ldots d)$. Regular functions on A are necklace words in the letters x and y

$$xy = yx \leadsto \varphi(X, Y) = \operatorname{tr} XY$$
 $xyxy \leadsto \varphi(X, Y) = \operatorname{tr} XYXY$

Vector fields on A are derivations $\theta: A \to A$; if $\theta(x,y) = (f_1, f_2)$ then $\theta \leadsto \hat{\theta}_{(X,Y)} = (f_1(X,Y), f_2(X,Y))$

Differential forms $\alpha \in DR^1(A)$ can be written as $g_1 dx + g_2 dy$ for some $g_1, g_2 \in A$, corresponding to

$$\hat{\alpha}_{(X,Y)}(U,V) = \operatorname{tr}(g_1(X,Y)U + g_2(X,Y)V)$$

Let us consider $A = \mathbb{C}\langle x,y \rangle$, the "associative affine plane". $\operatorname{Rep}_d^A = \operatorname{Mat}_{d,d}(\mathbb{C}) \oplus \operatorname{Mat}_{d,d}(\mathbb{C})$; its coordinate algebra is a polynomial ring in the $2d^2$ indeterminates X_{ij}, Y_{ij} $(i,j=1\dots d)$. Regular functions on A are necklace words in the letters x and y

$$xy = yx \leadsto \varphi(X, Y) = \operatorname{tr} XY$$
 $xyxy \leadsto \varphi(X, Y) = \operatorname{tr} XYXY$

Vector fields on A are derivations $\theta: A \to A$; if $\theta(x, y) = (f_1, f_2)$ then $\theta \leadsto \hat{\theta}_{(X,Y)} = (f_1(X,Y), f_2(X,Y))$

Differential forms $\alpha \in DR^1(A)$ can be written as $g_1 dx + g_2 dy$ for some $g_1, g_2 \in A$, corresponding to

$$\hat{\alpha}_{(X,Y)}(U,V) = \operatorname{tr}(g_1(X,Y)U + g_2(X,Y)V)$$

One also has bivectors like $\pi = h_1 \partial_x \partial_x + h_2 \partial_x h_3 \partial_y \in \mathcal{V}^2(A)$ (not the most general one!), which corresponds to

$$\hat{\pi}_{(X,Y)}((A_1,B_1),(A_2,B_2)) = \operatorname{tr}(h_1A_1A_2 - A_1h_1A_2 + h_2A_1h_3B_2 - h_3B_1h_2A_2)$$

and so on...

We would like to do Hamiltonian mechanics on A. Natural starting point is to take $\omega = dy dx \in DR^2(A)$, which gives

$$\hat{\omega}_{(X,Y)}((U_1,V_1),(U_2,V_2)) = \operatorname{tr}(V_1U_2 - U_1V_2)$$

canonical symplectic structures on each $\operatorname{\mathsf{Rep}}^A_d \simeq T^*\operatorname{\mathsf{Mat}}_{d,d}(\mathbb{C}).$

We would like to do Hamiltonian mechanics on A. Natural starting point is to take $\omega = dy dx \in DR^2(A)$, which gives

$$\hat{\omega}_{(X,Y)}((U_1,V_1),(U_2,V_2)) = \operatorname{tr}(V_1U_2 - U_1V_2)$$

canonical symplectic structures on each $\operatorname{Rep}_d^A \simeq T^* \operatorname{Mat}_{d,d}(\mathbb{C})$. Linear Poisson bivectors on A are in 1-1 correspondence with associative algebra structures on \mathbb{C}^2 . There are exactly 6 of them:

 $x\partial_x\partial_x$ Lie-Poisson on $X \oplus \text{zero bracket on } Y$ $x\partial_x\partial_x + y\partial_y\partial_y$ Lie-Poisson on $X \oplus$ Lie-Poisson on Y $y\partial_x\partial_x$ $x\partial_x\partial_x + y\partial_x\partial_y$ $\mathfrak{gl}_d(\mathbb{C}) \ltimes \mathsf{Mat}_{d,d}(\mathbb{C})$ by left mult. $\mathfrak{gl}_d(\mathbb{C}) \ltimes \mathsf{Mat}_{d,d}(\mathbb{C})$ by right mult. $x\partial_x\partial_x + y\partial_y\partial_x$ $x\partial_x\partial_x + y\partial_x\partial_y + y\partial_y\partial_x$ $\mathfrak{gl}_d(\mathbb{C}) \ltimes \mathsf{Mat}_{d,d}(\mathbb{C})$ by conjugation

We would like to do Hamiltonian mechanics on A. Natural starting point is to take $\omega = dy dx \in DR^2(A)$, which gives

$$\hat{\omega}_{(X,Y)}((U_1,V_1),(U_2,V_2)) = \operatorname{tr}(V_1U_2 - U_1V_2)$$

canonical symplectic structures on each $\operatorname{Rep}_d^A \simeq T^*\operatorname{Mat}_{d,d}(\mathbb{C})$. Linear Poisson bivectors on A are in 1-1 correspondence with associative algebra structures on \mathbb{C}^2 . There are exactly 6 of them:

 $\begin{array}{lll} x\partial_{x}\partial_{x} & \text{Lie-Poisson on } X \oplus \text{zero bracket on } Y \\ x\partial_{x}\partial_{x} + y\partial_{y}\partial_{y} & \text{Lie-Poisson on } X \oplus \text{Lie-Poisson on } Y \\ y\partial_{x}\partial_{x} & ? \\ x\partial_{x}\partial_{x} + y\partial_{x}\partial_{y} & \mathfrak{gl}_{d}(\mathbb{C}) \ltimes \operatorname{Mat}_{d,d}(\mathbb{C}) \text{ by left mult.} \\ x\partial_{x}\partial_{x} + y\partial_{y}\partial_{x} & \mathfrak{gl}_{d}(\mathbb{C}) \ltimes \operatorname{Mat}_{d,d}(\mathbb{C}) \text{ by right mult.} \\ x\partial_{x}\partial_{x} + y\partial_{x}\partial_{y} + y\partial_{y}\partial_{x} & \mathfrak{gl}_{d}(\mathbb{C}) \ltimes \operatorname{Mat}_{d,d}(\mathbb{C}) \text{ by conjugation} \end{array}$

(This correspondence holds in general, e.g. for associative 3d space one has 21 distinct structures + a single \mathbb{P}^1 -indexed family.)

Quadratic Poisson structures on $\mathbb{C}\langle x_1,\ldots,x_n\rangle$ have been classified (Odesskii, Rubtsov, Sokolov 2012). They are controlled by two tensors $r_{\alpha\beta}^{\gamma\delta}$ and $a_{\alpha\beta}^{\gamma\delta}$ (with indices running on $1\ldots n$) satisfying a set of relations (when a=0: associative YB equation for r).

Quadratic Poisson structures on $\mathbb{C}\langle x_1,\ldots,x_n\rangle$ have been classified (Odesskii, Rubtsov, Sokolov 2012). They are controlled by two tensors $r_{\alpha\beta}^{\gamma\delta}$ and $a_{\alpha\beta}^{\gamma\delta}$ (with indices running on $1\ldots n$) satisfying a set of relations (when a=0: associative YB equation for r). For n=2 there are 7 quadratic Poisson structures:

$$y\partial_{y}x\partial_{y} \qquad (a=0)$$

$$y\partial_{y}x\partial_{y} + x^{2}\partial_{y}\partial_{x} + yx\partial_{y}\partial_{y}$$

$$y\partial_{y}x\partial_{y} + x^{2}\partial_{x}\partial_{y} + xy\partial_{y}\partial_{y}$$

$$y\partial_{y}y\partial_{x} \qquad (a=0)$$

$$y\partial_{y}y\partial_{x} + y^{2}\partial_{x}\partial_{y} + xy\partial_{x}\partial_{x}$$

$$y\partial_{y}y\partial_{x} - y^{2}\partial_{y}\partial_{x} - yx\partial_{x}\partial_{x}$$

$$x^{2}\partial_{y}\partial_{y} \qquad (r=0)$$

Quadratic Poisson structures on $\mathbb{C}\langle x_1,\ldots,x_n\rangle$ have been classified (Odesskii, Rubtsov, Sokolov 2012). They are controlled by two tensors $r_{\alpha\beta}^{\gamma\delta}$ and $a_{\alpha\beta}^{\gamma\delta}$ (with indices running on $1\ldots n$) satisfying a set of relations (when a = 0: associative YB equation for r). For n=2 there are 7 quadratic Poisson structures:

$$y\partial_{y}x\partial_{y} \qquad (a=0)$$

$$y\partial_{y}x\partial_{y} + x^{2}\partial_{y}\partial_{x} + yx\partial_{y}\partial_{y}$$

$$y\partial_{y}x\partial_{y} + x^{2}\partial_{x}\partial_{y} + xy\partial_{y}\partial_{y}$$

$$y\partial_{y}y\partial_{x} \qquad (a=0)$$

$$y\partial_{y}y\partial_{x} + y^{2}\partial_{x}\partial_{y} + xy\partial_{x}\partial_{x}$$

$$y\partial_{y}y\partial_{x} - y^{2}\partial_{y}\partial_{x} - yx\partial_{x}\partial_{x}$$

$$x^{2}\partial_{y}\partial_{y} \qquad (r=0)$$

Of course there are also Poisson bivectors of higher degrees (e.g. $x\partial_x x^2\partial_x$, $x\partial_x x^2\partial_x + x\partial_x xy\partial_y$, ...).

Work in the "associative symplectic manifold" (A, ω) , $\omega = \mathrm{d} y \, \mathrm{d} x$. Free motion on A is described by $H = \frac{1}{2} y^2$. Hamilton equations are $\dot{x} = y$, $\dot{y} = 0$. Their general solution is

$$x(t) = y_0 t + x_0 \qquad (x_0, y_0 \in A)$$

Work in the "associative symplectic manifold" (A, ω) , $\omega = \mathrm{d} y \, \mathrm{d} x$. Free motion on A is described by $H = \frac{1}{2} y^2$. Hamilton equations are $\dot{x} = y$, $\dot{y} = 0$. Their general solution is

$$x(t) = y_0 t + x_0 \qquad (x_0, y_0 \in A)$$

This flow is not terribly interesting on $\operatorname{Rep}_d^A = T^* \operatorname{Mat}_{d,d}(\mathbb{C})$, but we can perform a symplectic quotient using the $\operatorname{GL}_d(\mathbb{C})$ -action:

$$\mu \colon \mathsf{Rep}_d^A \to \mathfrak{gl}_d(\mathbb{C}) \qquad \mu(X,Y) = [X,Y]$$

Work in the "associative symplectic manifold" (A, ω) , $\omega = \mathrm{d} y \, \mathrm{d} x$. Free motion on A is described by $H = \frac{1}{2} y^2$. Hamilton equations are $\dot{x} = y$, $\dot{y} = 0$. Their general solution is

$$x(t) = y_0 t + x_0 \qquad (x_0, y_0 \in A)$$

This flow is not terribly interesting on $\operatorname{Rep}_d^A = T^* \operatorname{Mat}_{d,d}(\mathbb{C})$, but we can perform a symplectic quotient using the $\operatorname{GL}_d(\mathbb{C})$ -action:

$$\mu \colon \mathsf{Rep}_d^A \to \mathfrak{gl}_d(\mathbb{C}) \qquad \mu(X,Y) = [X,Y]$$

Let $\mathbb{O}_1 := \text{adjoint orbit of minimal dimension in } \mathfrak{gl}_d(\mathbb{C})$. Then

$$\mathcal{C}_d := \mu^{-1}(\mathbb{O}_1)/\operatorname{GL}_d(\mathbb{C})$$

is a smooth symplectic manifold of dimension 2d.

What is associative geometry?

Applications: Calogero-Moser systems

Work in the "associative symplectic manifold" (A, ω) , $\omega = dy dx$. Free motion on A is described by $H = \frac{1}{2}y^2$. Hamilton equations are $\dot{x} = y$, $\dot{y} = 0$. Their general solution is

$$x(t) = y_0 t + x_0 \qquad (x_0, y_0 \in A)$$

This flow is not terribly interesting on $\operatorname{Rep}_d^A = T^* \operatorname{Mat}_{d.d}(\mathbb{C})$, but we can perform a symplectic quotient using the $GL_d(\mathbb{C})$ -action:

$$\mu \colon \mathsf{Rep}_d^A \to \mathfrak{gl}_d(\mathbb{C}) \qquad \mu(X,Y) = [X,Y]$$

Let $\mathbb{O}_1 := \text{adjoint orbit of minimal dimension in } \mathfrak{gl}_d(\mathbb{C})$. Then

$$\mathcal{C}_d := \mu^{-1}(\mathbb{O}_1)/\operatorname{GL}_d(\mathbb{C})$$

is a smooth symplectic manifold of dimension 2d. The open dense subset where X is diagonalizable is symplectomorphic to $T^*\mathbb{C}^{(d)}$ and the above flow corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} (q_i - q_j)^{-2}$$

Still working on (A, ω) , let us consider the "harmonic oscillator" $H = \frac{1}{2}(y^2 + \omega^2 x^2)$. Hamilton equations are $\dot{x} = y$, $\dot{y} = -\omega^2 x$. Their general solution is

$$x(t) = x_0 \cos(\omega t) + \frac{y_0}{\omega} \sin(\omega t)$$

Still working on (A,ω) , let us consider the "harmonic oscillator" $H=\frac{1}{2}(y^2+\omega^2x^2)$. Hamilton equations are $\dot{x}=y,\ \dot{y}=-\omega^2x$. Their general solution is

$$x(t) = x_0 \cos(\omega t) + \frac{y_0}{\omega} \sin(\omega t)$$

We descend again to the symplectic quotient \mathcal{C}_d (defined as before). On the dense open subset where X is diagonalizable the above flow corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq i} ((q_i - q_j)^{-2} + \omega^2 (q_i - q_j)^2)$$

Still working on (A,ω) , let us consider the "harmonic oscillator" $H=\frac{1}{2}(y^2+\omega^2x^2)$. Hamilton equations are $\dot{x}=y$, $\dot{y}=-\omega^2x$. Their general solution is

$$x(t) = x_0 \cos(\omega t) + \frac{y_0}{\omega} \sin(\omega t)$$

We descend again to the symplectic quotient \mathcal{C}_d (defined as before). On the dense open subset where X is diagonalizable the above flow corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} ((q_i - q_j)^{-2} + \omega^2 (q_i - q_j)^2)$$

One can also consider bigger adjoint orbits in $\mathfrak{gl}_d(\mathbb{C})$ (with some complications) \Rightarrow Calogero-Moser systems with "spin"

$$H = rac{1}{2} \sum_{i} p_i^2 + rac{1}{2} \sum_{i
eq i} rac{\lambda_{ij}^2}{(q_i - q_j)^2}$$

Consider now the "associative Poisson manifold" (A,π) where $\pi = y \partial_y \partial_y + x \partial_y \partial_x$. On the open subset of Rep_d^A where X is invertible the Poisson bivector $\hat{\pi}$ is non degenerate. The corresponding symplectic form reads

$$\omega_{(X,Y)} = \operatorname{tr}(\mathrm{d}Y \wedge X^{-1}\mathrm{d}X - YX^{-1}\mathrm{d}X \wedge X^{-1}\mathrm{d}X)$$

Consider now the "associative Poisson manifold" (A,π) where $\pi = y \partial_y \partial_y + x \partial_y \partial_x$. On the open subset of Rep_d^A where X is invertible the Poisson bivector $\hat{\pi}$ is non degenerate. The corresponding symplectic form reads

$$\omega_{(X,Y)} = \operatorname{tr}(\mathrm{d}Y \wedge X^{-1}\mathrm{d}X - YX^{-1}\mathrm{d}X \wedge X^{-1}\mathrm{d}X)$$

This is the canonical symplectic form on $T^*\operatorname{GL}_d(\mathbb{C})$ if we identify this (trivial) bundle with $\mathcal{U}:=\operatorname{GL}_d(\mathbb{C})\times\operatorname{Mat}_{d,d}(\mathbb{C})\subset\operatorname{Rep}_d^A$ by means of left translations.

Consider now the "associative Poisson manifold" (A,π) where $\pi = y \partial_y \partial_y + x \partial_y \partial_x$. On the open subset of Rep_d^A where X is invertible the Poisson bivector $\hat{\pi}$ is non degenerate. The corresponding symplectic form reads

$$\omega_{(X,Y)} = \operatorname{tr}(\mathrm{d} Y \wedge X^{-1} \mathrm{d} X - YX^{-1} \mathrm{d} X \wedge X^{-1} \mathrm{d} X)$$

This is the canonical symplectic form on $T^*\operatorname{GL}_d(\mathbb{C})$ if we identify this (trivial) bundle with $\mathcal{U}:=\operatorname{GL}_d(\mathbb{C})\times\operatorname{Mat}_{d,d}(\mathbb{C})\subset\operatorname{Rep}_d^A$ by means of left translations.

We again perform a symplectic quotient with respect to the $GL_d(\mathbb{C})$ -action, but this time with momentum map

$$\mu \colon \mathcal{U} \to \mathfrak{gl}_d(\mathbb{C}) \qquad \mu(X,Y) = XYX^{-1} - Y$$

We obtain another smooth symplectic manifold of dimension 2d

$$\mathcal{C}_d^{tr} := \mu^{-1}(\mathbb{O}_1)/\operatorname{GL}_d(\mathbb{C})$$

Let us take again $H = \frac{1}{2}y^2$, with solution $x(t) = y_0t + x_0$. The projection of this flow on the open dense subset of \mathcal{C}_d^{tr} where X is diagonalizable corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} (\sin(q_i - q_j))^{-2}$$
 (and/or sinh)

Let us take again $H = \frac{1}{2}y^2$, with solution $x(t) = y_0t + x_0$. The projection of this flow on the open dense subset of \mathcal{C}_d^{tr} where X is diagonalizable corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} (\sin(q_i - q_j))^{-2}$$
 (and/or sinh)

Many other systems may be amenable to such a treatment:

Gibbons-Hermsen

Let us take again $H = \frac{1}{2}y^2$, with solution $x(t) = y_0t + x_0$. The projection of this flow on the open dense subset of \mathcal{C}_d^{tr} where X is diagonalizable corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} (\sin(q_i - q_j))^{-2}$$
 (and/or sinh)

Many other systems may be amenable to such a treatment:

- Gibbons-Hermsen
- ullet CM systems associated to root systems of Lie algebras $eq A_n$

Let us take again $H = \frac{1}{2}y^2$, with solution $x(t) = y_0t + x_0$. The projection of this flow on the open dense subset of \mathcal{C}_d^{tr} where X is diagonalizable corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} (\sin(q_i - q_j))^{-2}$$
 (and/or sinh)

Many other systems may be amenable to such a treatment:

- Gibbons-Hermsen
- ullet CM systems associated to root systems of Lie algebras $eq A_n$
- non-periodic Toda lattice

Let us take again $H = \frac{1}{2}y^2$, with solution $x(t) = y_0t + x_0$. The projection of this flow on the open dense subset of \mathcal{C}_d^{tr} where X is diagonalizable corresponds to the flow determined by

$$H = \frac{1}{2} \sum_{i} p_i^2 + \frac{1}{2} \sum_{i \neq j} (\sin(q_i - q_j))^{-2}$$
 (and/or sinh)

Many other systems may be amenable to such a treatment:

- Gibbons-Hermsen
- ullet CM systems associated to root systems of Lie algebras $eq A_n$
- non-periodic Toda lattice
- every other classical integrable system mentioned in Perelomov's book

Thank you very much for your attention and...

Happy birthday Ugo!