Noncommutative symplectic geometry of Gibbons-Hermsen varieties

Alberto Tacchella
ICMC - USP São Carlos
tacchella@icmc.usp.br

EGBI 2012 - Salvador
July 30, 2012
Non-commutative symplectic geometry

Quivers and Gibbons-Hermsen varieties

Group actions
Basic ingredients:

- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega}: \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega} : \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
- map $X : \Omega^0(M) \to \mathcal{X}(M)$ defined by $f \mapsto \tilde{\omega}^{-1}(df)$;
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega}: \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
- map $X: \Omega^0(M) \to \mathcal{X}(M)$ defined by $f \mapsto \tilde{\omega}^{-1}(df)$;
- ...which gives a *symplectic* vector field (i.e. $\mathcal{L}_{X_f}(\omega) = 0$);
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega}: \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
- map $X: \Omega^0(M) \to \mathcal{X}(M)$ defined by $f \mapsto \tilde{\omega}^{-1}(df)$
- ...which gives a symplectic vector field (i.e. $\mathcal{L}_X(\omega) = 0$);
- chain of inclusions: $\mathcal{X}(M) \supseteq \mathcal{X}_{\text{symp}}(M) \supseteq \mathcal{X}_{\text{Ham}}(M)$
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega}: \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
- map $X: \Omega^0(M) \to \mathcal{X}(M)$ defined by $f \mapsto \tilde{\omega}^{-1}(df)$
- ...which gives a symplectic vector field (i.e. $\mathcal{L}_X(\omega) = 0$);
- chain of inclusions: $\mathcal{X}(M) \supset \mathcal{X}_{\text{symp}}(M) \supset \mathcal{X}_{\text{Ham}}(M)$
- ...corresponding to $\Omega^1(M) \supset \Omega^1_{\text{closed}}(M) \supset \Omega^1_{\text{exact}}(M)$;
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega}: \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
- map $X: \Omega^0(M) \to \mathcal{X}(M)$ defined by $f \mapsto \tilde{\omega}^{-1}(df)$
 - which gives a symplectic vector field (i.e. $\mathcal{L}_X(\omega) = 0$);
- chain of inclusions: $\mathcal{X}(M) \supseteq \mathcal{X}_{\text{symp}}(M) \supseteq \mathcal{X}_{\text{Ham}}(M)$
 - corresponding to $\Omega^1(M) \supseteq \Omega^1_{\text{closed}}(M) \supseteq \Omega^1_{\text{exact}}(M)$;
- Poisson brackets, defined e.g. by $\{f, g\} := \omega(X_f, X_g)$;
Symplectic geometry in one slide

Basic ingredients:
- a (smooth) variety M of even dimension;
- a closed, non-degenerate 2-form ω on M.

Some consequences:
- isomorphism $\tilde{\omega} : \mathcal{X}(M) \to \Omega^1(M)$ defined by $X \mapsto i_X(\omega)$;
- map $X : \Omega^0(M) \to \mathcal{X}(M)$ defined by $f \mapsto \tilde{\omega}^{-1}(df)$;
- ...which gives a symplectic vector field (i.e. $\mathcal{L}_{X_f}(\omega) = 0$);
- chain of inclusions: $\mathcal{X}(M) \supseteq \mathcal{X}_{\text{symp}}(M) \supseteq \mathcal{X}_{\text{Ham}}(M)$;
- ...corresponding to $\Omega^1(M) \supseteq \Omega^1_{\text{closed}}(M) \supseteq \Omega^1_{\text{exact}}(M)$;
- Poisson brackets, defined e.g. by $\{f, g\} := \omega(X_f, X_g)$;
- an exact sequence of Lie algebras
 $$0 \to H^0_{\text{dR}}(M) \to \Omega^0(M) \to \mathcal{X}_{\text{symp}}(M) \to H^1_{\text{dR}}(M) \to 0.$$
Founding principle of non-commutative geometry: generalize the well-known dualities of the form

\[\text{Spc} \xrightarrow{\mathcal{O}} \text{Alg}^{\text{op}} \xleftarrow{\text{Spec}} \]

to the case where \text{Alg} is some category of non-commutative algebras.
Non-commutative geometry (à la Ginzburg)

Founding principle of non-commutative geometry: generalize the well-known dualities of the form

\[
\begin{array}{c}
\text{Spc} \\ \overset{O}{\longrightarrow} \\
\text{Spec} \\
\end{array}
\begin{array}{c}
\text{Alg}^{\text{op}} \\ \overset{\text{Spec}}{\longleftarrow}
\end{array}
\]

to the case where \(\text{Alg} \) is some category of non-commutative algebras.

Ginzburg’s approach: for \(A \) any associative algebra,

- take the familiar notions of (commutative) algebraic geometry and replace \(A \)-modules with \(A \)-bimodules;
Non-commutative geometry (à la Ginzburg)

Founding principle of non-commutative geometry: generalize the well-known dualities of the form

$$\text{Spc} \xrightleftharpoons{\mathcal{O}} \text{Alg}^{\text{op}} \xleftarrow{\text{Spec}}$$

to the case where Alg is some category of non-commutative algebras.

Ginzburg’s approach: for A any associative algebra,

- take the familiar notions of (commutative) algebraic geometry and replace A-modules with A-bimodules;
- do not focus on particular constructions (which are not going to work anymore), but on universal properties;
Non-commutative geometry (à la Ginzburg)

Founding principle of non-commutative geometry: generalize the well-known dualities of the form

\[\text{Spc} \xrightarrow{O} \text{Alg}^{\text{op}} \xleftarrow{\text{Spec}} \]

to the case where \(\text{Alg} \) is some category of non-commutative algebras.

Ginzburg’s approach: for \(A \) any associative algebra,

- take the familiar notions of (commutative) algebraic geometry and replace \(A \)-modules with \(A \)-bimodules;
- do not focus on particular constructions (which are not going to work anymore), but on universal properties;
- might get something different even when \(A \) is commutative!
Some constructions that generalize

- Vector fields as A-bimodule derivations $A \to A$;
Some constructions that generalize

- Vector fields as A-bimodule derivations $A \to A$;
- Kähler differentials as a universal element (Ω^1_{nc}, d) for the functor $\text{Der}(A, -): A\text{-Bimod} \to \text{Set}$;
Some constructions that generalize

- Vector fields as A-bimodule derivations $A \to A$;
- Kähler differentials as a universal element (Ω_{nc}^1, d) for the functor $\text{Der}(A, -): \text{A-Bimod} \to \text{Set}$;
- Noncommutative forms $\Omega_{nc}^\bullet(A)$ as elements of the tensor algebra of the A-bimodule $\Omega_{nc}^1(A)$;
Some constructions that generalize

- Vector fields as A-bimodule derivations $A \to A$;
- Kähler differentials as a universal element $(\Omega^1_{nc}, \text{d})$ for the functor $\text{Der}(A, -) : A\text{-Bimod} \to \text{Set}$;
- Noncommutative forms $\Omega^\bullet_{nc}(A)$ as elements of the tensor algebra of the A-bimodule $\Omega^1_{nc}(A)$;
- Cartan calculus: a degree -1 “interior product” i_θ and a degree 0 “Lie derivative” \mathcal{L}_θ satisfying

$$\mathcal{L}_\theta = [\text{d}, i_\theta]$$

$$[\mathcal{L}_\theta, \mathcal{L}_\eta] = \mathcal{L}_{[\theta, \eta]}$$

$$[\mathcal{L}_\theta, i_\gamma] = i_{[\theta, \gamma]}$$
The complex of non-commutative differential forms

Hence we have a complex \((\Omega^\bullet_{nc}(A), d)\). However

\[
H^k(\Omega^\bullet_{nc}(A)) = \begin{cases}
\mathbb{K} & \text{if } k = 0 \\
0 & \text{otherwise}
\end{cases}
\]
The complex of non-commutative differential forms

Hence we have a complex $(\Omega_{\text{nc}}^\bullet(A), d)$. However

$$H^k(\Omega_{\text{nc}}^\bullet(A)) = \begin{cases} \mathbb{K} & \text{if } k = 0 \\ 0 & \text{otherwise} \end{cases}$$

More interesting is the Karoubi-de Rham complex, defined by

$$\text{DR}^\bullet(A) := \frac{\Omega_{\text{nc}}^\bullet(A)}{[\Omega_{\text{nc}}^\bullet(A), \Omega_{\text{nc}}^\bullet(A)\]}$$

as a quotient of graded vector spaces, with

$$[a, b] = ab - (-1)^{\deg a \deg b} ba$$
The complex of non-commutative differential forms

Hence we have a complex \((\Omega_{\text{nc}}^\bullet(A), d)\). However

\[
H^k(\Omega_{\text{nc}}^\bullet(A)) = \begin{cases}
\mathbb{K} & \text{if } k = 0 \\
0 & \text{otherwise}
\end{cases}
\]

More interesting is the Karoubi-de Rham complex, defined by

\[
\text{DR}^\bullet(A) := \frac{\Omega_{\text{nc}}^\bullet(A)}{[\Omega_{\text{nc}}^\bullet(A), \Omega_{\text{nc}}^\bullet(A)]}
\]

as a quotient of graded vector spaces, with

\[
[a, b] = ab - (-1)^{\deg a \deg b} ba
\]

\(d, i, \mathcal{L}\) all descend on \(\text{DR}^\bullet(A)\).
The complex of non-commutative differential forms

Hence we have a complex \((\Omega^\bullet_{nc}(A), d)\). However

\[
H^k(\Omega^\bullet_{nc}(A)) = \begin{cases}
\mathbb{K} & \text{if } k = 0 \\
0 & \text{otherwise}
\end{cases}
\]

More interesting is the Karoubi-de Rham complex, defined by

\[
\text{DR}^\bullet(A) := \frac{\Omega^\bullet_{nc}(A)}{[\Omega^\bullet_{nc}(A), \Omega^\bullet_{nc}(A)]}
\]

as a quotient of graded vector spaces, with

\[
[a, b] = ab - (-1)^{\deg a \deg b} ba
\]

d, i, \mathcal{L} all descend on \(\text{DR}^\bullet(A)\).

\[
\text{DR}^0(A) = \frac{A}{[A, A]}
\]
A non-commutative symplectic manifold is given by an associative algebra A and a closed, non-degenerate 2-form $\omega \in \text{DR}^2(A)$.
A non-commutative symplectic manifold is given by an associative algebra A and a closed, non-degenerate 2-form $\omega \in \text{DR}^2(A)$.

- isomorphism $\tilde{\omega} : \text{Der}(A) \to \text{DR}^1(A)$ defined by $\theta \mapsto i_\theta(\omega)$;
Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative algebra A and a closed, non-degenerate 2-form $\omega \in DR^2(A)$.

- isomorphism $\tilde{\omega} : \text{Der}(A) \to DR^1(A)$ defined by $\theta \mapsto i_\theta(\omega)$;
- symplectic derivations $(\mathcal{L}_\theta(\omega) = 0)$ forming a Lie subalgebra $\text{Der}_\omega(A) \subseteq \text{Der}(A)$;
A non-commutative symplectic manifold is given by an associative algebra A and a closed, non-degenerate 2-form $\omega \in \text{DR}^2(A)$.

- isomorphism $\tilde{\omega}: \text{Der}(A) \to \text{DR}^1(A)$ defined by $\theta \mapsto i_\theta(\omega)$;
- symplectic derivations ($\mathcal{L}_\theta(\omega) = 0$) forming a Lie subalgebra $\text{Der}_\omega(A) \subseteq \text{Der}(A)$;
- map $\theta: \text{DR}^0(A) \to \text{Der}_\omega(A)$ given by $f \mapsto \tilde{\omega}^{-1}(df)$ ("Hamiltonian derivation" associated to f);
Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative algebra A and a closed, non-degenerate 2-form $\omega \in \text{DR}^2(A)$.

- isomorphism $\tilde{\omega}: \text{Der}(A) \to \text{DR}^1(A)$ defined by $\theta \mapsto i_\theta(\omega)$;
- symplectic derivations ($L_\theta(\omega) = 0$) forming a Lie subalgebra $\text{Der}_\omega(A) \subseteq \text{Der}(A)$;
- map $\theta: \text{DR}^0(A) \to \text{Der}_\omega(A)$ given by $f \mapsto \tilde{\omega}^{-1}(df)$ ("Hamiltonian derivation" associated to f);
- θ is symplectic iff $i_\theta(\omega)$ is closed in $\text{DR}^1(A)$, hamiltonian iff $i_\theta(\omega)$ is exact in $\text{DR}^1(A)$;
A non-commutative symplectic manifold is given by an associative algebra A and a closed, non-degenerate 2-form $\omega \in \text{DR}^2(A)$.

- isomorphism $\tilde{\omega} : \text{Der}(A) \rightarrow \text{DR}^1(A)$ defined by $\theta \mapsto i_\theta(\omega)$;
- symplectic derivations ($\mathcal{L}_\theta(\omega) = 0$) forming a Lie subalgebra $\text{Der}_\omega(A) \subseteq \text{Der}(A)$;
- map $\theta : \text{DR}^0(A) \rightarrow \text{Der}_\omega(A)$ given by $f \mapsto \tilde{\omega}^{-1}(df)$ ("Hamiltonian derivation" associated to f);
- θ is symplectic iff $i_\theta(\omega)$ is closed in $\text{DR}^1(A)$, hamiltonian iff $i_\theta(\omega)$ is exact in $\text{DR}^1(A)$;
- Poisson brackets $\{f, g\} := i_{f \theta} i_{g \theta}(\omega)$ that make $\text{DR}^0(A)$ a Lie algebra;
A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form $\omega \in \text{DR}^2(A)$.

- Isomorphism $\tilde{\omega} : \text{Der}(A) \to \text{DR}^1(A)$ defined by $\theta \mapsto i_\theta(\omega)$;
- Symplectic derivations ($L_\theta(\omega) = 0$) forming a Lie subalgebra $\text{Der}_\omega(A) \subseteq \text{Der}(A)$;
- Map $\theta : \text{DR}^0(A) \to \text{Der}_\omega(A)$ given by $f \mapsto \tilde{\omega}^{-1}(df)$ ("Hamiltonian derivation" associated to f);
- θ is symplectic iff $i_\theta(\omega)$ is closed in $\text{DR}^1(A)$, hamiltonian iff $i_\theta(\omega)$ is exact in $\text{DR}^1(A)$;
- Poisson brackets $\{f, g\} := i_{\theta_f} i_{\theta_g}(\omega)$ that make $\text{DR}^0(A)$ a Lie algebra;
- The map θ fits into an exact sequence of Lie algebras $0 \to H^0(\text{DR}^\bullet(A)) \to \text{DR}^0(A) \to \text{Der}_\omega(A) \to H^1(\text{DR}^\bullet(A)) \to 0$.
A quiver is just a directed graph with no constraints on loops and multiple arcs.
Quivers by example

A quiver is just a directed graph with no constraints on loops and multiple arcs.

\[
\begin{array}{c}
\circ \rightarrow \circ
\end{array}
\]

A representation of a quiver is given by the choice of a (f.d.) vector space for each vertex and a linear map for each arrow.

\[
\text{Rep}(Q, (d_1, d_2)) = \text{Mat}_{d_1, d_1}(\mathbb{C}) \oplus \text{Mat}_{d_1, d_2}(\mathbb{C})
\]
Quivers by example

A quiver is just a directed graph with no constraints on loops and multiple arcs.

\[\bullet \quad \rightarrow \quad \bullet \]

A representation of a quiver is given by the choice of a (f.d.) vector space for each vertex and a linear map for each arrow.

\[
\text{Rep}(Q, (d_1, d_2)) = \text{Mat}_{d_1, d_1}(\mathbb{C}) \oplus \text{Mat}_{d_1, d_2}(\mathbb{C})
\]

On \(\text{Rep}(Q, \vec{d}) \) there is the action of an algebraic group \(G_{\vec{d}} \) by “change of basis”.

\[
G_{(d_1, d_2)} = (\text{GL}_{d_1}(\mathbb{C}) \times \text{GL}_{d_2}(\mathbb{C}))/\mathbb{C}^*
\]
Quivers by example

A quiver is just a directed graph with no constraints on loops and multiple arcs.

[Diagram: A quiver with two arrows pointing from one vertex to another]

A representation of a quiver is given by the choice of a (f.d.) vector space for each vertex and a linear map for each arrow.

\[
\text{Rep}(Q, (d_1, d_2)) = \text{Mat}_{d_1,d_1}(\mathbb{C}) \oplus \text{Mat}_{d_1,d_2}(\mathbb{C})
\]

On \(\text{Rep}(Q, \vec{d})\) there is the action of an algebraic group \(G_{\vec{d}}\) by “change of basis”.

\[
G_{(d_1,d_2)} = (\text{GL}_{d_1}(\mathbb{C}) \times \text{GL}_{d_2}(\mathbb{C}))/\mathbb{C}^*
\]

The corresponding quotient,

\[
\mathcal{R}(Q, \vec{d}) = \text{Rep}(Q, \vec{d})/G_{\vec{d}}
\]

is the moduli space of representations of \(Q\) with dim. vector \(\vec{d}\).
Where does symplectic geometry enter the picture?

To each quiver Q we can associate its *double* Q, by adding to each arrow a in Q an arrow a^* that goes in the opposite direction.

\[
\begin{array}{c}
\bullet \\
\downarrow & \uparrow \\
\bullet \\
\end{array}
\]

Thus its representation space can be seen as a cotangent bundle:

\[
\text{Rep}(Q, \vec{d}) = T^* \text{Rep}(Q, \vec{d})
\]

and is equipped with a canonical symplectic form. Moreover, the action of $G_{\vec{d}}$ on $\text{Rep}(Q, \vec{d})$ is just the lift of its action on the base, hence it is Hamiltonian and has a moment map μ:

\[
\mu : \text{Rep}(Q, \vec{d}) \rightarrow g_{\vec{d}}
\]

By judiciously choosing a point in $g_{\vec{d}}$, we can obtain some interesting (smooth, symplectic) varieties via Marsden-Weinstein reduction.
Where does symplectic geometry enter the picture?

To each quiver Q we can associate its \textit{double} \overline{Q}, by adding to each arrow a in Q an arrow a^* that goes in the opposite direction.

\[
\begin{array}{c}
\circ \overset{\bullet}{\longrightarrow} \\
\end{array}
\]

Its representation space can be seen as a cotangent bundle:

\[
\text{Rep}(\overline{Q}, \vec{d}) = T^*\text{Rep}(Q, \vec{d})
\]

thus it is equipped with a canonical symplectic form.
Where does symplectic geometry enter the picture?

To each quiver Q we can associate its double \overline{Q}, by adding to each arrow a in Q an arrow a^* that goes in the opposite direction.

![Diagram of quiver](image)

Its representation space can be seen as a cotangent bundle:

$$\text{Rep}(\overline{Q}, \vec{d}) = T^*\text{Rep}(Q, \vec{d})$$

thus it is equipped with a canonical symplectic form. Moreover, the action of $G_{\vec{d}}$ on $\text{Rep}(\overline{Q}, \vec{d})$ is just the lift of its action on the base, hence it is Hamiltonian and has a moment map

$$\mu : \text{Rep}(\overline{Q}, \vec{d}) \to \mathfrak{g}_{\vec{d}}$$

By judiciously choosing a point in $\mathfrak{g}_{\vec{d}}$, we can obtain some interesting (smooth, symplectic) varieties via Marsden-Weinstein reduction.
Where does \textit{n.c.} symplectic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally associated with \overline{Q}, its \textit{path algebra} $\mathbb{C}\overline{Q}$. It is defined as the \mathbb{C}-vector space having as basis the set of \textit{paths} in \overline{Q}, with product given by composition of paths (or 0 if the paths do not compose).
Where does n.c. symplectic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally associated with \overline{Q}, its path algebra $\mathbb{C}\overline{Q}$. It is defined as the \mathbb{C}-vector space having as basis the set of paths in \overline{Q}, with product given by composition of paths (or 0 if the paths do not compose).

\[
\mathbb{C}\overline{Q} = A_{11} \oplus A_{12} \oplus A_{21} \oplus A_{22}
\]

\[
A_{11} \simeq \mathbb{C}\langle a, a^*, x^*x \rangle,
\]

etc.
Where does n.c. sympletic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally associated with \overline{Q}, its path algebra $\mathbb{C}\overline{Q}$. It is defined as the \mathbb{C}-vector space having as basis the set of paths in \overline{Q}, with product given by composition of paths (or 0 if the paths do not compose).

$$\mathbb{C}\overline{Q} = A_{11} \oplus A_{12} \oplus A_{21} \oplus A_{22}$$

$$A_{11} \cong \mathbb{C}\langle a, a^*, x^*x \rangle,$$

etc.

The equivalence class in $\text{DR}^2(\mathbb{C}\overline{Q})$ of the 2-form

$$\omega_{nc} := \sum_{a \in Q} da \, da^*$$

endows $\mathbb{C}\overline{Q}$ with a non-commutative symplectic structure.
Take $r, n \in \mathbb{N}$ and

$$V_{n,r} = \text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,r}(\mathbb{C}) \oplus \text{Mat}_{r,n}(\mathbb{C})$$

$$= T^\ast(\text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,r}(\mathbb{C}))$$
Gibbons-Hermsen varieties

Take $r, n \in \mathbb{N}$ and

$$V_{n,r} = \text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,r}(\mathbb{C}) \oplus \text{Mat}_{r,n}(\mathbb{C})$$

$$= T^*(\text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,r}(\mathbb{C}))$$

We consider the action of $\text{GL}_n(\mathbb{C})$ on $V_{n,r}$ given by

$$G.(X, Y, v, w) = (GXG^{-1}, GYG^{-1}, Gv, wG^{-1})$$

Hamiltonian action with moment map $V_{n,r} \rightarrow \mathfrak{gl}_n(\mathbb{C})$

$$\mu(X, Y, v, w) = [X, Y] + vw$$
Gibbons-Hermsen varieties

Take \(r, n \in \mathbb{N} \) and

\[
V_{n,r} = \text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,r}(\mathbb{C}) \oplus \text{Mat}_{r,n}(\mathbb{C}) = T^*(\text{Mat}_{n,n}(\mathbb{C}) \oplus \text{Mat}_{n,r}(\mathbb{C}))
\]

We consider the action of \(\text{GL}_n(\mathbb{C}) \) on \(V_{n,r} \) given by

\[
G.(X, Y, v, w) = (GXG^{-1}, GYG^{-1}, Gv, wG^{-1})
\]

Hamiltonian action with moment map \(V_{n,r} \rightarrow \mathfrak{gl}_n(\mathbb{C}) \)

\[
\mu(X, Y, v, w) = [X, Y] + vw
\]

For every \(\tau \in \mathbb{C}^* \) the action of \(\text{GL}_n(\mathbb{C}) \) on \(\mu^{-1}(\tau I) \) is free, so by Marsden-Weinstein we have a smooth symplectic manifold of dimension \(2nr \)

\[
C_{n,r} = \mu^{-1}(\tau I) / \text{GL}_n(\mathbb{C})
\]
The $r = 1$ case

$$G_{(n,1)} = (\text{GL}_n(\mathbb{C}) \times \text{GL}_1(\mathbb{C}))/\mathbb{C}^* \simeq \text{GL}_n(\mathbb{C})$$
The $r = 1$ case

$$G_{(n,1)} = (\text{GL}_n(\mathbb{C}) \times \text{GL}_1(\mathbb{C}))/\mathbb{C}^* \simeq \text{GL}_n(\mathbb{C})$$

It turns out that in this case we can use a simpler quiver

$$\overline{Q}_\circ = \begin{array}{c}
 a \\
 a^* \\
\end{array}$$

Then $\text{DR}^0(\mathbb{C}\overline{Q}_\circ)$ is the vector space of necklace words in a and a^*, with bracket given by

$$\{f, g\} = \frac{\partial f}{\partial a} \frac{\partial g}{\partial a^*} - \frac{\partial f}{\partial a^*} \frac{\partial g}{\partial a} \mod [\mathbb{C}\overline{Q}_\circ, \mathbb{C}\overline{Q}_\circ]$$
The $r = 1$ case

\[G_{(n,1)} = (\text{GL}_n(\mathbb{C}) \times \text{GL}_1(\mathbb{C}))/\mathbb{C}^* \cong \text{GL}_n(\mathbb{C}) \]

It turns out that in this case we can use a simpler quiver

\[\overline{Q}_o = \begin{array}{ccc} a & \rightarrow & a^* \\ & \downarrow & \downarrow \\ & \text{•} & \end{array} \]

\[\mathbb{C}\overline{Q}_o = \mathbb{C}\langle a, a^* \rangle \]

Then $\text{DR}^0(\mathbb{C}\overline{Q}_o)$ is the vector space of necklace words in a and a^*, with bracket given by

\[\{f, g\} = \frac{\partial f}{\partial a} \frac{\partial g}{\partial a^*} - \frac{\partial f}{\partial a^*} \frac{\partial g}{\partial a} \mod [\mathbb{C}\overline{Q}_o, \mathbb{C}\overline{Q}_o] \]

Theorem (Ginzburg 2000)

*Each symplectic variety $\mathcal{C}_{n,1}$ can be embedded as a coadjoint orbit in the Lie algebra $\text{DR}^0(\mathbb{C}\overline{Q}_o)$.***
Calogero-Moser correspondence

Theorem (Berest, Wilson 1999)

The space $\mathcal{C} := \bigsqcup_{n \in \mathbb{N}} \mathcal{C}_{n,1}$ parametrizes isomorphism classes of right ideals in the first Weyl algebra over \mathbb{C}

$$A_1 = \mathbb{C}\langle a, a^* \rangle / (aa^* - a^*a - 1)$$

Moreover, the natural action of the group $\text{Aut} A_1$ on each of the $\mathcal{C}_{n,1}$ is transitive.
Calogero-Moser correspondence

Theorem (Berest, Wilson 1999)

The space $\mathcal{C} := \bigsqcup_{n \in \mathbb{N}} \mathcal{C}_{n,1}$ parametrizes isomorphism classes of right ideals in the first Weyl algebra over \mathbb{C}

$$A_1 = \mathbb{C}\langle a, a^* \rangle/(aa^* - a^*a - 1)$$

Moreover, the natural action of the group $\text{Aut} A_1$ on each of the $\mathcal{C}_{n,1}$ is transitive.

This was proved by BW in a very roundabout way. But:

$$\text{Aut} A_1 \simeq \text{Aut}(\mathbb{C}Q_\circ; [a, a^*])$$

the group of symplectic automorphisms of $\mathbb{C}Q_\circ$ (i.e., algebra automorphisms of $\mathbb{C}Q_\circ$ preserving $[a, a^*]$).
The space $\mathcal{C} := \bigsqcup_{n \in \mathbb{N}} \mathcal{C}_{n,1}$ parametrizes isomorphism classes of right ideals in the first Weyl algebra over \mathbb{C}.

$$A_1 = \mathbb{C} \langle a, a^* \rangle / (aa^* - a^*a - 1)$$

Moreover, the natural action of the group $\text{Aut } A_1$ on each of the $\mathcal{C}_{n,1}$ is transitive.

This was proved by BW in a very roundabout way. But:

$$\text{Aut } A_1 \simeq \text{Aut}(\overline{\mathbb{C}Q_0}; [a, a^*])$$

the group of symplectic automorphisms of $\overline{\mathbb{C}Q_0}$ (i.e., algebra automorphisms of $\overline{\mathbb{C}Q_0}$ preserving $[a, a^*]$).

So from this perspective it is a natural result after all.
A result of Bielawski and Pidstrigach

Next simplest case: \(r = 2 \). Taking

\[
Q_{BP} = \begin{array}{c}
\bullet \\
\circ \\
\end{array}
\begin{array}{c}
\xrightarrow{a} \\
\xleftarrow{x} \\
\xrightarrow{y} \\
\end{array}
\begin{array}{c}
\bullet \\
\circ \\
\end{array}
\]

we can embed \(V_{n,2} \) into \(\text{Rep}(\overline{Q}_{BP}, (n, 1)) \).
Next simplest case: $r = 2$. Taking

$$Q_{BP} = \begin{array}{ccc}
\bullet & \overset{a}{\Rightarrow} & \bullet \\
\begin{array}{c}
\circlearrowleft \\
\leftarrow x
\end{array} & & \begin{array}{c}
\rightarrow y \\
\end{array}
\end{array}$$

we can embed $V_{n,2}$ into $\text{Rep}(\overline{Q}_{BP}, (n, 1))$.

Theorem (Bielawski, Pidstrygach 2008)

The group $\text{TAut}(\mathbb{C}\overline{Q}_{BP}; c)$ of (tame) symplectic automorphisms of $\mathbb{C}\overline{Q}_{BP}$ acts transitively on $C_{n,2}$.

Here $c = [a, a^*] + [x, x^*] + [y, y^*]$.
Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezev that \(\bigsqcup_{n \in \mathbb{N}} C_{n,r} \) parametrizes isomorphism classes of a certain class of right sub-\(A_1 \)-modules in \(B_1^r \).
Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezov that \(\bigcup_{n \in \mathbb{N}} C_{n,r} \) parametrizes isomorphism classes of a certain class of right sub-\(A_1 \)-modules in \(B_1^r \).

Conjecture (G. Wilson): on \(C_{n,r} \) there is a transitive action of \(\Gamma_{\text{alg}} \times \text{PGL}_r(\mathbb{C}[z]) \)

(\(\Gamma_{\text{alg}} \) is a group of maps of the form \(e^p I_r \) for some polynomial \(p \in z \mathbb{C}[z] \)).
Non-commutative symplectic geometry
Quivers and Gibbons-Hermsen varieties
Group actions

Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezev that $\bigcup_{n \in \mathbb{N}} C_{n,r}$ parametrizes isomorphism classes of a certain class of right sub-A_1-modules in B_1^r.

Conjecture (G. Wilson): on $C_{n,r}$ there is a transitive action of

$$\Gamma_{\text{alg}} \times \text{PGL}_r(\mathbb{C}[z])$$

(where Γ_{alg} is a group of maps of the form $e^{p}I_r$ for some polynomial $p \in z\mathbb{C}[z]$).

Theorem (A.T., I. Mencattini)

When $r = 2$ there is a morphism of groups

$$i : \Gamma_{\text{alg}} \to \text{PTAut}(\mathbb{C}Q_{BP}; c)$$

and the induced action on $C_{n,2}$ is transitive (at least) on a dense open subset.