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Outline of the talk

@ Mini-crash course on associative geometry

© Integrating systems by the projection method

© Some developments
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Geometric objects on associative algebras

In ordinary (commutative) geometry:
@ space X, sheaf Ox, commutative algebra Ax = I'(Ox)
e tangent sheaf Tx, vector fields X' = ['(Tx), polyvector fields X'®
@ cotangent sheaf Qx, 1-forms Q! = I(Qx), differential forms Q°
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Geometric objects on associative algebras

In ordinary (commutative) geometry:

@ space X, sheaf Ox, commutative algebra Ax = I'(Ox)

e tangent sheaf Tx, vector fields X' = ['(Tx), polyvector fields X'®

@ cotangent sheaf Qx, 1-forms Q! = I(Qx), differential forms Q°
In associative geometry:

o space sheaf associative algebra A, vector space A, = A/[A, A]

e graded vec.sp. V*(A), bracket [VP(A), VI(A)] C VPTI~1(A)

e graded vec.sp. DR*(A), differential d: DR¥(A) — DR¥*1(A)
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Geometric objects on associative algebras

In ordinary (commutative) geometry:

@ space X, sheaf Ox, commutative algebra Ax = I'(Ox)

e tangent sheaf Tx, vector fields X' = ['(Tx), polyvector fields X'®

@ cotangent sheaf Qx, 1-forms Q! = I(Qx), differential forms Q°
In associative geometry:

o space sheaf associative algebra A, vector space A, = A/[A, A]

e graded vec.sp. V*(A), bracket [VP(A), VI(A)] C VPTI~1(A)

e graded vec.sp. DR*(A), differential d: DR¥(A) — DR¥*1(A)
Enough to do:

o symplectic geometry: pair (A,w) with w € DR?(A) such that dw = 0,

map 0 — w(f#, —) is invertible
e Poisson geometry: pair (A, ) with = € V?(A) such that [r, 7] =0,
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The route to ordinary manifolds

Family of affine schemes/varieties
Repy := Homy aig(A, Mat, 4(K))
with GL4(KK)-action given by
(g-p)(a) := gp(a)g™

Moduli space of representations:

R§ = Rep{l /GL4(K)
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The route to ordinary manifolds
Family of affine schemes/varieties
Repé‘ = HomK_Ng(A, Matd7d(K))

with GL4(KK)-action given by

(g-p)(a) == gp(a)g ™"

Moduli space of representations:
R§ = Rep{l /GL4(K)

Associative-geometric objects on A induce GL4-invariant objects on RepdA
(hence on RY):

Ay — K[Repj]Cta(¥)
VP(A) — {GLg-invariant p-vector fields on Rep’}
DRP(A) — {GLg-invariant p-forms on Rep4}
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The case of quiver path algebras
A quiver is just another name for a (directed, multi)graph (with loops).

b
aCo‘? °

N
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The case of quiver path algebras

A quiver is just another name for a (directed, multi)graph (with loops).

IGr——n
\id

Each quiver Q determines an associative algebra, the path algebra KQ.
Generated as a K-vector space by paths (including the trivial ones), with
product given by concatenation of paths

ba as edba ca’e ad =0
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The case of quiver path algebras
A quiver is just another name for a (directed, multi)graph (with loops).

b
aCo‘? °

N

Each quiver Q determines an associative algebra, the path algebra KQ.
Generated as a K-vector space by paths (including the trivial ones), with
product given by concatenation of paths

ba as edba ca’e ad =0

We can then apply the above machinery and do (associative) geometry
over quivers. This is in fact a particularly nice case, as quiver path
algebras are always formally smooth (= Repg‘ is always smooth).
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Fundamentals of associative geometry on KQ

A regular function f € Ay is a sum of necklace
words in A, that is cycles in the quiver Q:

bca = cab = abc becbe = cbeb
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Fundamentals of associative geometry on KQ

A regular function f € Ay is a sum of necklace
words in A, that is cycles in the quiver Q: b

P2
QCOV.
bca = cab = abc becbe = cbeb ... c

For each arrow x € @ add a parallel arrow dx. Define
QP(A) as the vector space spanned by the paths in this é db
[ ]

enlarged quiver with exactly p arrows of the form dx: %\o
(p==
bcdb  a?dbdc e da  de
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Fundamentals of associative geometry on KQ

A regular function f € Ay is a sum of necklace
words in A, that is cycles in the quiver Q: b

P2
QCOV.
bca = cab = abc becbe = cbeb ... c

For each arrow x € @ add a parallel arrow dx. Define

QP(A) as the vector space spanned by the paths in this db
enlarged quiver with exactly p arrows of the form dx: e<=——oe
(p==
bcdb  a’dbdc .. da de

To get DRP(A) quotient out the linear subspaces [Q%(A), 2P~ (A)lk=o. p
= the paths which are not closed become zero:

bcdb = [bc,db] = 0 € DRY(A)
cadb = adbc = dbca € DRY(A)
a?dbdc = dbdc 2> = —dc 2> db € DR?(A)
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Fundamentals of associative geometry on KQ

For each arrow x € @ add an opposite arrow 0y. Define

DP(A) as the vector space spanned by the paths in this %
enlarged quiver with exactly p arrows of the form 9y: e<——oe
(pr=ez
bcaa Caaac e 83 aC
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Fundamentals of associative geometry on KQ

For each arrow x € @ add an opposite arrow 0y. Define

DP(A) as the vector space spanned by the paths in this L
enlarged quiver with exactly p arrows of the form 9y: e<——oe
(pr=ez
bco, c0,0. o 5, e

To get VP(A) quotient out the linear subspaces [DX(A), DP~*(A)]k=o.p
= again, the paths which are not closed become zero:

bcd, = cO,b = d,bc € VI(A)
€0,0; = 0,0.c = —0.c0, € V?(A)
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Fundamentals of associative geometry on KQ

For each arrow x € @ add an opposite arrow 0y. Define

DP(A) as the vector space spanned by the paths in this L
enlarged quiver with exactly p arrows of the form 9y: e<——oe
(pr=ez
bco, c0,0. o 5, e

To get VP(A) quotient out the linear subspaces [DX(A), DP~*(A)]k=o.p
= again, the paths which are not closed become zero:

bcd, = cO,b = d,bc € VI(A)
€0,0; = 0,0.c = —0.c0, € V?(A)

The pairing between a 1-form a = 5 rcdx and a vector field
0 = > cq PxOx is then given by

(a,0) = Z rePx € Ay

xXEQR
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Induced objects on representation spaces

(A, B, C) € Rep(,, ;) = Mat, »(K) & Mat,,(K) & Mat, »(K)
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Induced objects on representation spaces

(A, B, C) € Rep(,, ;) = Mat, »(K) & Mat,,(K) & Mat, »(K)

@ objects in Q°(A) and D°*(A) induce "matrix-valued objects”:
p=bcacA p(A,B,C)=BCA

o = bcdb € QY(A) A(A, B, C) = BCdB

w = a?dbdc € Q3(A) &(A, B, C):Ade/\dC
0 = bcd, € D(A) 0(A,B,C) =

7 = ad:0p € D?(A) #(A,B,C) = % 2%
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Induced objects on representation spaces

(A, B, C) € Rep(,, ;) = Mat, »(K) & Mat,,(K) & Mat, »(K)

@ objects in Q°(A) and D°*(A) induce "matrix-valued objects”:

p=bcac A
a = bcdb € QL(A)

w = a’dbdc € Q?(A)

0 = bcd, € DY(A)
7 = 0.0y € D(A)

@ the passage to DR*(A) and V
p = bca € Ay
o = bcdb € DR(A)
w = a?dbdc € DR?*(A)
0 = bcd, € VI(A)
7= ad.0p € V?(A)

A(A, B, C) = BCA
A(A, B, C) = BCdB

&(A, B, C) :Ade/\dC

f(A,B,C)=B

#(A,B,C) = % 2%

V*(A) corresponds to “taking traces”:

P(A, B, C) = tr BCA € K[Rep/]
&(A, B, C) = tr BCAB € Q(Rep))
&(A, B, C) = tr A2dB A dC € Q%(Rep’)
0(A, B, C) = tr BC g5 € X' (Repy))
(A B,C) =trAZ A & € X2(Rep])

Bonus: all these quantities are automatically GL-invariant.
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Dynamical systems on a quiver

Definition

A dynamical system on a quiver @ is an element of V}(KQ) (that is, a
derivation KQ — KQ).

Every dynamical system 6 on @ induces a family of GL4-invariant global
vector fields on representation spaces of A = KQ:

éd IS Xl(RepZ,‘)

whose flows are obtained by solving a system of matrix ODEs.
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Dynamical systems on a quiver

Definition

A dynamical system on a quiver @ is an element of V}(KQ) (that is, a
derivation KQ — KQ).

Every dynamical system 6 on @ induces a family of GL4-invariant global
vector fields on representation spaces of A = KQ:

gd IS Xl(RepZ,‘)

whose flows are obtained by solving a system of matrix ODEs.

If we have a symplectic or Poisson structure on A then each regular
function H € A, automatically determines a corresponding “Hamiltonian
derivation” 0y given by

igy, (w) = —dH resp. m(dH, =)

= can speak of "Hamiltonian systems” on Q.
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The projection method

A method to integrate Hamiltonian systems using the symplectic reduction
of larger (and easier to solve) systems.

@ Olshanetsky and Perelomov, Invent. Math. 37 (1976)
e Kazhdan, Kostant and Sternberg, CPAM 31 (1978)
@ Olshanetsky and Perelomov, Phys. Rep. 71 (1981)
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The projection method

A method to integrate Hamiltonian systems using the symplectic reduction
of larger (and easier to solve) systems.

@ Olshanetsky and Perelomov, Invent. Math. 37 (1976)
e Kazhdan, Kostant and Sternberg, CPAM 31 (1978)
@ Olshanetsky and Perelomov, Phys. Rep. 71 (1981)
Natural reinterpretation in associative geometry: given a derivation 6 on A,

Integration of Integration of
e

éd on Repf} 9Ad on Rﬁ

Need to reduce also the symplectic (Poisson, bihamiltonian...) structure
along with the flow. This may complicate the construction of the manifold
R4; in the simplest situations it will be an ordinary (Marsden-Weinstein)
symplectic quotient.
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Example: rational CM system

Take Q quiver with two loops, A = C(x, y), w = dy dx. Free motion on A
is given by H = 1y?, so that 0 = y0y. Flow on Repj ~ T*Maty 4(C) is
simply

X(t) = Y(0)t + X(0)
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Example: rational CM system

Take Q quiver with two loops, A = C(x, y), w = dy dx. Free motion on A
is given by H = 1y?, so that 0 = y0y. Flow on Repj ~ T*Maty 4(C) is
simply

X(t) = Y(0)t + X(0)

Now we select a (co)adjoint orbit in gl (C) and perform a symplectic
quotient via the momentum map

p: Repd = gly(C) (X, Y) =[X,Y]
Let Oy := adjoint orbit of minimal dimension in gl;(C). Then
Cq = 1 1(01)/ GL4(C)

is a smooth symplectic manifold of dimension 2d.
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Example: rational CM system

Take Q quiver with two loops, A = C(x, y), w = dy dx. Free motion on A
is given by H = 1y?, so that 0 = y0y. Flow on Repj ~ T*Maty 4(C) is
simply
X(t) = Y(0)t + X(0)
Now we select a (co)adjoint orbit in gl (C) and perform a symplectic
quotient via the momentum map
p: Repd = gly(C) (X, Y) =[X,Y]
Let Oy := adjoint orbit of minimal dimension in gl;(C). Then
Cq = 1 1(01)/ GL4(C)

is a smooth symplectic manifold of dimension 2d. The open dense subset
where X is diagonalizable is symplectomorphic to T*C(?) and the above
flow corresponds to the flow determined by

1 1 1
1T T

. )2
iz \di qj)
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Example: rational CM system

If we select a bigger adjoint orbit in gl4(C): singular simplectic reduction
(Hochgerner) leads to Calogero-Moser systems with “spin variables”

1
”252”' 2Z —q)2

I#J
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Example: rational CM system

If we select a bigger adjoint orbit in gl4(C): singular simplectic reduction
(Hochgerner) leads to Calogero-Moser systems with “spin variables”

1
2 Z pi + 2 Z _ q )2
i I#J
More generally we could take H = %yQ + p(x), with p polynomial which

plays the role of “external potential’ after the reduction step. One then
needs to solve the matrix ODE

X+p(X)=0

which is possible e.g. when p(x) = w?x? (harmonic potential), obtaining

A5 ey -

i£j ql_qj
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Example: trigonometric CM system

Now take (A, ) where 7 = y0,0, + x0,0x. On the open subset
U C Repf where X is invertible the induced Poisson bivector # is non
degenerate. The corresponding symplectic form reads

wix,yy = tr(dY A X7TdX — YXTHdX A XTTdX)

which is the canonical form on T* GL4(C) if we identify this (trivial)
bundle with & = GL4(C) x Matgy 4(C) by means of left translations.
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Example: trigonometric CM system

Now take (A, ) where 7 = y0,0, + x0,0x. On the open subset
U C Repf where X is invertible the induced Poisson bivector # is non
degenerate. The corresponding symplectic form reads

wix,yy = tr(dY A X7TdX — YXTHdX A XTTdX)

which is the canonical form on T* GL4(C) if we identify this (trivial)
bundle with & = GL4(C) x Matgy 4(C) by means of left translations.

We perform again a symplectic quotient with respect to the action of
GL4(C), but this time using the momentum map

p:Ud = gly(C)  p(X,Y)=XYXt-Y
We obtain another smooth symplectic manifold of dimension 2d

¢y == i~ (01)/ 6Ly (C)
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Example: trigonometric CM system

Taking again H = %yQ, the projection of the flow on the open dense subset
of CJ where X is diagonalizable corresponds to the flow determined by

1 2 1 . -2 H
H = > Zpi + 5 Z;é:(sm(q,- - qj)) (and/or sinh)
i i#j

Reducing on bigger adjoint orbits: trigonometric CM systems with spin.
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Example: trigonometric CM system

Taking again H = %yQ, the projection of the flow on the open dense subset
of CJ where X is diagonalizable corresponds to the flow determined by

H= %Zp? + %Z(sin(q; —qj)) 2 (and/or sinh)
i i#j

Reducing on bigger adjoint orbits: trigonometric CM systems with spin.

We can also consider the “dual” open dense subset of CY" where Y is

diagonalizable. The flows determined on this subset by the functions

Hi = x* coincide with the flows determined by the light-cone Hamiltonans

for the rational Ruijsenaars-Schneider system:

Sk = Z eZie/Pi H

IC{1,...,n} icl
[l|=k i¢!

This is related to the Ruijsenaars duality which holds between these two
systems.
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Example: GH system

Take A = CQ,, where Q, is the double of the quiver

X

PN
3 o Z —Yo— o

~_, 7
with canonical symplectic form w = da*da + dx*dx + Y7, dy*dy;.
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Example: GH system

Take A = CQ,, where Q, is the double of the quiver

X
S
3 9 Z —Y>— o
~_, 7
with canonical symplectic form w = da*da + dx*dx + Y7, dy*dy;.
Points in Rep’(é‘n 1) are tuples (X, Y,vi,wa,...,w,, wy, va,...,V,); the

relevant momentum map is

HOG Y Vo wa) = [X, Y] 4 vaws = > viw
i=2
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Example: GH system

Take A = CQ,, where Q, is the double of the quiver

X

S
a C.l = 02
~_, 7
with canonical symplectic form w = da*da + dx*dx + Y7, dy*dy;.
Points in Rep’(é‘n 1) are tuples (X, Y,vi,wa,...,w,, wy, va,...,V,); the

relevant momentum map is
PO Y Vo wo) = [X, Y+ viws — > viw;
i=2
The flow induced by the Hamiltonian %3*2 on Repf‘dJ) is
(X, Y, Vo, Wo) = (X +tY, Y, vy, Wy)
On the quotient p1~%(7/)/GL4(C) it reduces to
1 7~ (66 @)
I TR et
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Associative bihamiltonian structures
A bihamiltonian manifold is a manifold M which admits two distinct

Poisson bivectors 7, 71 such that [mg, m1] = 0. (Equivalently: mp + 71 is
Poisson, 7o + A7 is Poisson for every \ € P1))
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Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors 7, 71 such that [mg, m1] = 0. (Equivalently: mp + 71 is
Poisson, 7o + A7 is Poisson for every \ € P1))

The translation to the associative realm is straightforward: triple

(A, 7o, m1) with mo, 1 € V2(A) double Poisson structures such that

[71'0,71'1] =0¢ V3(A)
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Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors 7, 71 such that [mg, m1] = 0. (Equivalently: mp + 71 is
Poisson, 7o + A7 is Poisson for every \ € P1))

The translation to the associative realm is straightforward: triple

(A, 7o, m1) with mo, 1 € V2(A) double Poisson structures such that

[71'0,71'1] =0¢ V3(A)

Classical method to manufacture bihamiltonian structures: my comes from
a symplectic form, 71 is built from 79 by means of a recursion operator
N: TM — TM whose Nijenhuis torsion vanishes:

Tu(X, Y) = [N(X), N(Y)] = N([N(X), Y]+ [X, N(Y)] = N([X, YT))
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Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors 7, 71 such that [mg, m1] = 0. (Equivalently: mp + 71 is
Poisson, 7o + A7 is Poisson for every \ € P1))

The translation to the associative realm is straightforward: triple

(A, 7o, m1) with mo, 1 € V2(A) double Poisson structures such that

[71'0,71'1] =0¢ V3(A)

Classical method to manufacture bihamiltonian structures: my comes from
a symplectic form, 71 is built from 79 by means of a recursion operator
N: TM — TM whose Nijenhuis torsion vanishes:

Tu(X, Y) = [N(X), N(Y)] = N([N(X), Y]+ [X, N(Y)] = N([X, YT))

In the associative realm, the recursion operator should be given by a
K-linear map N: V1(A) — V1(A). Need some condition to ensure that the
result of N “depends linearly” on the source derivation...
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Associative bihamiltonian structures

Let us call a map N: VY(A) — VI(A) regular if there exists a derivation
dV: A — QY(A) such that, for every 6 € V1(A), the derivation N(6)
factorizes as

A—2" o)

N(9) i'b
A
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Associative bihamiltonian structures

Let us call a map N: VY(A) — VI(A) regular if there exists a derivation
dV: A — QY(A) such that, for every 6 € V1(A), the derivation N(6)

factorizes as

A—2" o)
N(6) i'b
A

This implies in particular that the transpose of N is well defined as the
unique map N*: DRY(A) — DRY(A) such that

(N*(a),0) = (o, N(0))

(In fact dV induces a whole “deformed Cartan calculus” on DR®*(A)...)
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Associative bihamiltonian structures

Let us call a map N: VY(A) — VI(A) regular if there exists a derivation
dV: A — QY(A) such that, for every 6 € V1(A), the derivation N(6)
factorizes as

A—2" o)
N(6) i'b
A

This implies in particular that the transpose of N is well defined as the
unique map N*: DRY(A) — DRY(A) such that

(N*(a),0) = (o, N(0))

(In fact dV induces a whole “deformed Cartan calculus” on DR®*(A)...)

Now we can simply define a Nijenhuis tensor on A as a regular map
N: V(A) — VY(A) such that Ty = 0.
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Associative bihamiltonian structures

So we have a notion of Nijenhuis tensor on an associative algebra A. If
some further compatibility conditions between 79 and N are satisfied, we
speak of a Poisson-Nijenhuis structure on Q.

Theorem (C. Bartocci, A.T, LMP 2017)

Let Q be a quiver and (7, N) a Poisson-Nijenhuis structure on it. Then
the bivector

wV(a, B) = T(N*(), B) = m(a, N*(B))

is a double Poisson structure on A with [mg, 1] = 0.
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Associative bihamiltonian structures

So we have a notion of Nijenhuis tensor on an associative algebra A. If
some further compatibility conditions between 79 and N are satisfied, we
speak of a Poisson-Nijenhuis structure on Q.

Theorem (C. Bartocci, A.T, LMP 2017)

Let Q be a quiver and (7, N) a Poisson-Nijenhuis structure on it. Then
the bivector

wV(a, B) = T(N*(), B) = m(a, N*(B))

is a double Poisson structure on A with [mg, 1] = 0.

As an example, the associative bihamiltonian structure for the rational CM
system is given by

7o = 0,0y

71 = y0),0x + x0x0x

with recursion operator N(0)(x,y) = (y8(x) + [0(y), x],0(y)y).
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Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex
structures on a real manifold. Can we find an associative analogue also for
this construction?
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Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex
structures on a real manifold. Can we find an associative analogue also for
this construction?

Let @ be a quiver, A= RQ. A regular endomorphism /: V}(A) — VI(A)
is a complex structure on Q provided that:

o I2 —- — idvl(A),
Q@ 7,=0.
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Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex
structures on a real manifold. Can we find an associative analogue also for
this construction?

Let @ be a quiver, A= RQ. A regular endomorphism /: V}(A) — VI(A)
is a complex structure on Q provided that:

o I2 —- — idvl(A),
Q@ 7, =0
Basic example on Q, where Q is the quiver with one vertex and n loops:
1(0)(a1,...,an,a7,...,a35) = (—0(a1),...,—0(a}),0(a1),...,0(an))

This recovers the complex structure on RepﬂjQ ~ T Maty, 4(R)®" which
corresponds to the complex vector space Maty 4(C)®".
Clearly, more non-trivial examples are needed...
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Associative Kahler manifolds
Classically: quadruple (M, [, g,w) with M (real) manifold, / integrable

complex structure, g Riemannian metric, w symplectic form which satisfy
a number of compatibility conditions.
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Associative Kahler manifolds

Classically: quadruple (M, [, g,w) with M (real) manifold, / integrable
complex structure, g Riemannian metric, w symplectic form which satisfy

a number of compatibility conditions.
In our case it is natural to start from the data (A, /,w) and recover the

“Riemannian metric” as
g(0.n) == iimlis(w)) (8, € VI(A))

then require the symmetry constraint g(6,7n) — g(n,0) =0 mod [A, A].
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Associative Kahler manifolds

Classically: quadruple (M, [, g,w) with M (real) manifold, / integrable
complex structure, g Riemannian metric, w symplectic form which satisfy
a number of compatibility conditions.

In our case it is natural to start from the data (A, /,w) and recover the
“Riemannian metric”" as

g(@, 77) = il(n)(ia(w)) (‘9’ ne Vl(A))

then require the symmetry constraint g(6,7n) — g(n,0) =0 mod [A, A].
The basic example should again be the double of the n-loop quiver with /
defined as before, w = ), da’da; and

g(0,m) = Z(O(a;)n(a;) +n(ai)o(a;))

Once the Kahler case is under control, one would like to proceed to the
hyper-Kahler case (relevant for Nakajima's quiver varieties).
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Associative contact structures

What if the original dynamics depends explicitly on a “time” variable? This

situation arises, for instance, in the noncommutative Painlevé-Calogero
correspondence, where one deals with Hamiltonians such as

1 1 t
H :72_7 2 72_9
"=y 2(X +2) X

(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736)
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Associative contact structures

What if the original dynamics depends explicitly on a “time” variable? This

situation arises, for instance, in the noncommutative Painlevé-Calogero
correspondence, where one deals with Hamiltonians such as

1, 1 5t
H// = 2y 2(X + 2) Ox
(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736)

Idea: instead of working in CQ = C(x, y) one considers

A:=C(x,y, t)/I

where | = (xt — tx, yt — ty). The canonical symplectic form on C(x, y)
then induces a double Poisson structure on A.
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Associative contact structures

What if the original dynamics depends explicitly on a “time” variable? This
situation arises, for instance, in the noncommutative Painlevé-Calogero
correspondence, where one deals with Hamiltonians such as

1, 1 5t
H// = 2y 2(X + 2) Ox
(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736)

Idea: instead of working in CQ = C(x, y) one considers
A:=Cx,y, 1)/

where | = (xt — tx, yt — ty). The canonical symplectic form on C(x, y)
then induces a double Poisson structure on A.

One expects to find a picture similar to the classical case, in which the
extended phase space of the system can be seen as a trivial bundle over a
line. This should correspond to dealing with associative algebras over a
I-dimensional polynomial ring.
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Thanks everybody!
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