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Outline of the talk

1 Mini-crash course on associative geometry

2 Integrating systems by the projection method

3 Some developments
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Geometric objects on associative algebras

In ordinary (commutative) geometry:

space X , sheaf OX , commutative algebra AX = Γ(OX )

tangent sheaf TX , vector fields X 1 = Γ(TX ), polyvector fields X •

cotangent sheaf ΩX , 1-forms Ω1 = Γ(ΩX ), differential forms Ω•

In associative geometry:

space sheaf associative algebra A, vector space A\ = A/[A,A]

graded vec.sp. V•(A), bracket [Vp(A),Vq(A)] ⊆ Vp+q−1(A)

graded vec.sp. DR•(A), differential d : DRk(A)→ DRk+1(A)

Enough to do:

symplectic geometry: pair (A, ω) with ω ∈ DR2(A) such that dω = 0,
map θ 7→ ω(θ,−) is invertible

Poisson geometry: pair (A, π) with π ∈ V2(A) such that [π, π] = 0,

. . .
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The route to ordinary manifolds

Family of affine schemes/varieties

RepA
d := HomK-Alg(A,Matd ,d(K))

with GLd(K)-action given by

(g .ρ)(a) := gρ(a)g−1

Moduli space of representations:

RA
d := RepA

d //GLd(K)

Associative-geometric objects on A induce GLd -invariant objects on RepA
d

(hence on RA
d ):

A\ → K[RepA
d ]GLd (K)

Vp(A) → {GLd -invariant p-vector fields on RepA
d }

DRp(A) → {GLd -invariant p-forms on RepAd }
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The case of quiver path algebras

A quiver is just another name for a (directed, multi)graph (with loops).

•a 99
b //
c

// •
d
��
•

e

cc

Each quiver Q determines an associative algebra, the path algebra KQ.
Generated as a K-vector space by paths (including the trivial ones), with
product given by concatenation of paths

ba a3 edba ca2e ad = 0 . . .

We can then apply the above machinery and do (associative) geometry
over quivers. This is in fact a particularly nice case, as quiver path
algebras are always formally smooth (⇒ RepA

d is always smooth).
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Fundamentals of associative geometry on KQ

A regular function f ∈ A\ is a sum of necklace
words in A, that is cycles in the quiver Q:

bca = cab = abc bcbc = cbcb . . .
•a 99

c
66 •

b
vv

For each arrow x ∈ Q add a parallel arrow dx . Define
Ωp(A) as the vector space spanned by the paths in this
enlarged quiver with exactly p arrows of the form dx :

bc db a2 db dc . . .

•

a

--

da

MM c
22

dc

== •
brr

db
~~

To get DRp(A) quotient out the linear subspaces [Ωk(A),Ωp−k(A)]k=0...p

⇒ the paths which are not closed become zero:

bc db = [bc, db] = 0 ∈ DR1(A)

ca db = a db c = db ca ∈ DR1(A)

a2 db dc = db dc a2 = −dc a2 db ∈ DR2(A)
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Fundamentals of associative geometry on KQ

For each arrow x ∈ Q add an opposite arrow ∂x . Define
Dp(A) as the vector space spanned by the paths in this
enlarged quiver with exactly p arrows of the form ∂x :

bc∂a c∂a∂c . . .

•

a

--

∂a

MM c
22

∂b
  
•

brr

∂c

``

To get Vp(A) quotient out the linear subspaces [Dk(A),Dp−k(A)]k=0...p

⇒ again, the paths which are not closed become zero:

bc∂a = c∂ab = ∂abc ∈ V1(A)

c∂a∂c = ∂a∂cc = −∂cc∂a ∈ V2(A)

The pairing between a 1-form α =
∑

x∈Q rx dx and a vector field
θ =

∑
x∈Q px∂x is then given by

〈α, θ〉 =
∑
x∈Q

rxpx ∈ A\
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Induced objects on representation spaces

(A,B,C ) ∈ RepA
(n,r) = Matn,n(K)⊕Matn,r (K)⊕Matr ,n(K)

objects in Ω•(A) and D•(A) induce “matrix-valued objects”:

p = bca ∈ A p̂(A,B,C ) = BCA
α = bc db ∈ Ω1(A) α̂(A,B,C ) = BCdB
ω = a2 db dc ∈ Ω2(A) ω̂(A,B,C ) = A2dB ∧ dC

θ = bc∂a ∈ D1(A) θ̂(A,B,C ) = BC ∂
∂A

π = a∂c∂b ∈ D2(A) π̂(A,B,C ) = A ∂
∂C ∧

∂
∂B

the passage to DR•(A) and V•(A) corresponds to “taking traces”:

p = bca ∈ A\ ˆ̂p(A,B,C ) = trBCA ∈ K[RepA
d ]

α = bc db ∈ DR1(A) ˆ̂α(A,B,C ) = trBCdB ∈ Ω1(RepA
d )

ω = a2 db dc ∈ DR2(A) ˆ̂ω(A,B,C ) = trA2dB ∧ dC ∈ Ω2(RepA
d )

θ = bc∂a ∈ V1(A) ˆ̂
θ(A,B,C ) = trBC ∂

∂A ∈ X
1(RepA

d )

π = a∂c∂b ∈ V2(A) ˆ̂π(A,B,C ) = trA ∂
∂C ∧

∂
∂B ∈ X

2(RepA
d )

Bonus: all these quantities are automatically GL-invariant.
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Dynamical systems on a quiver

Definition

A dynamical system on a quiver Q is an element of V1(KQ) (that is, a
derivation KQ → KQ).

Every dynamical system θ on Q induces a family of GLd -invariant global
vector fields on representation spaces of A = KQ:

ˆ̂θd ∈ X 1(RepA
d )

whose flows are obtained by solving a system of matrix ODEs.

If we have a symplectic or Poisson structure on A then each regular
function H ∈ A\ automatically determines a corresponding “Hamiltonian
derivation” θH given by

iθH (ω) = −dH resp. π(dH,−)

⇒ can speak of “Hamiltonian systems” on Q.
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The projection method

A method to integrate Hamiltonian systems using the symplectic reduction
of larger (and easier to solve) systems.

Olshanetsky and Perelomov, Invent. Math. 37 (1976)

Kazhdan, Kostant and Sternberg, CPAM 31 (1978)

Olshanetsky and Perelomov, Phys. Rep. 71 (1981)

Natural reinterpretation in associative geometry: given a derivation θ on A,

Integration of

θ̂d on RepA
d

//
Integration of

ˆ̂θd on RA
d

Need to reduce also the symplectic (Poisson, bihamiltonian...) structure
along with the flow. This may complicate the construction of the manifold
RA

d ; in the simplest situations it will be an ordinary (Marsden-Weinstein)
symplectic quotient.
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Example: rational CM system

Take Q quiver with two loops, A = C〈x , y〉, ω = dy dx . Free motion on A
is given by H = 1

2y
2, so that θH = y∂x . Flow on RepA

d ' T ∗Matd ,d(C) is
simply

X (t) = Y (0)t + X (0)

Now we select a (co)adjoint orbit in gld(C) and perform a symplectic
quotient via the momentum map

µ : RepA
d → gld(C) µ(X ,Y ) = [X ,Y ]

Let O1 := adjoint orbit of minimal dimension in gld(C). Then

Cd := µ−1(O1)/GLd(C)

is a smooth symplectic manifold of dimension 2d . The open dense subset
where X is diagonalizable is symplectomorphic to T ∗C(d) and the above
flow corresponds to the flow determined by

H =
1

2

∑
i

p2i +
1

2

∑
i 6=j

1

(qi − qj)2
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Example: rational CM system

If we select a bigger adjoint orbit in gld(C): singular simplectic reduction
(Hochgerner) leads to Calogero-Moser systems with “spin variables”

H =
1

2

∑
i

p2i +
1

2

∑
i 6=j

λ2ij
(qi − qj)2

More generally we could take H = 1
2y

2 + p(x), with p polynomial which
plays the role of “external potential” after the reduction step. One then
needs to solve the matrix ODE

Ẍ + p′(X ) = 0

which is possible e.g. when p(x) = ω2x2 (harmonic potential), obtaining

H =
1

2

∑
i

p2i +
1

2

∑
i 6=j

(
1

(qi − qj)2
+ ω2(qi − qj)

2

)
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Example: trigonometric CM system

Now take (A, π) where π = y∂y∂y + x∂y∂x . On the open subset
U ⊂ RepA

d where X is invertible the induced Poisson bivector π̂ is non
degenerate. The corresponding symplectic form reads

ω(X ,Y ) = tr(dY ∧ X−1dX − YX−1dX ∧ X−1dX )

which is the canonical form on T ∗ GLd(C) if we identify this (trivial)
bundle with U = GLd(C)×Matd ,d(C) by means of left translations.

We perform again a symplectic quotient with respect to the action of
GLd(C), but this time using the momentum map

µ : U → gld(C) µ(X ,Y ) = XYX−1 − Y

We obtain another smooth symplectic manifold of dimension 2d

Ctrd := µ−1(O1)/GLd(C)

Alberto Tacchella Integrable systems and associative geometry Dec 19, 2017 13 / 22



Example: trigonometric CM system

Now take (A, π) where π = y∂y∂y + x∂y∂x . On the open subset
U ⊂ RepA

d where X is invertible the induced Poisson bivector π̂ is non
degenerate. The corresponding symplectic form reads

ω(X ,Y ) = tr(dY ∧ X−1dX − YX−1dX ∧ X−1dX )

which is the canonical form on T ∗ GLd(C) if we identify this (trivial)
bundle with U = GLd(C)×Matd ,d(C) by means of left translations.
We perform again a symplectic quotient with respect to the action of
GLd(C), but this time using the momentum map

µ : U → gld(C) µ(X ,Y ) = XYX−1 − Y

We obtain another smooth symplectic manifold of dimension 2d

Ctrd := µ−1(O1)/GLd(C)
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Example: trigonometric CM system

Taking again H = 1
2y

2, the projection of the flow on the open dense subset
of Ctrd where X is diagonalizable corresponds to the flow determined by

H =
1

2

∑
i

p2i +
1

2

∑
i 6=j

(sin(qi − qj))−2 (and/or sinh)

Reducing on bigger adjoint orbits: trigonometric CM systems with spin.

We can also consider the “dual” open dense subset of Ctrd where Y is
diagonalizable. The flows determined on this subset by the functions
Hk = xk coincide with the flows determined by the light-cone Hamiltonans
for the rational Ruijsenaars-Schneider system:

Sk =
∑

I⊆{1,...,n}
|I |=k

e
∑

i∈I pi
∏
i∈I
j /∈I

√
1 +

g2

(xi − xj)2

This is related to the Ruijsenaars duality which holds between these two
systems.

Alberto Tacchella Integrable systems and associative geometry Dec 19, 2017 14 / 22



Example: trigonometric CM system

Taking again H = 1
2y

2, the projection of the flow on the open dense subset
of Ctrd where X is diagonalizable corresponds to the flow determined by

H =
1

2

∑
i

p2i +
1

2

∑
i 6=j

(sin(qi − qj))−2 (and/or sinh)

Reducing on bigger adjoint orbits: trigonometric CM systems with spin.
We can also consider the “dual” open dense subset of Ctrd where Y is
diagonalizable. The flows determined on this subset by the functions
Hk = xk coincide with the flows determined by the light-cone Hamiltonans
for the rational Ruijsenaars-Schneider system:

Sk =
∑

I⊆{1,...,n}
|I |=k

e
∑

i∈I pi
∏
i∈I
j /∈I

√
1 +

g2

(xi − xj)2

This is related to the Ruijsenaars duality which holds between these two
systems.

Alberto Tacchella Integrable systems and associative geometry Dec 19, 2017 14 / 22



Example: GH system

Take A = CQr , where Qr is the double of the quiver

•1a 77
y2 ++

yr
88 •2

x
xx

with canonical symplectic form ω = da∗da + dx∗dx +
∑r

i=2 dy
∗
i dyi .

Points in RepA
(n,1) are tuples (X ,Y , v1,w2, . . . ,wr ,w1, v2, . . . , vr ); the

relevant momentum map is

µ(X ,Y , vα,wα) = [X ,Y ] + v1w1 −
r∑

i=2

viwi

The flow induced by the Hamiltonian 1
2a
∗2 on RepA

(d ,1) is

Φt(X ,Y , vα,wα) = (X + tY ,Y , vα,wα)

On the quotient µ−1(τ I )//GLd(C) it reduces to

H =
1

2

∑
i

p2i +
τ2

2

∑
i 6=j

〈fi , ej〉〈fj , ei 〉
(qi − qj)2
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Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors π0, π1 such that [π0, π1] = 0. (Equivalently: π0 + π1 is
Poisson, π0 + λπ1 is Poisson for every λ ∈ P1.)

The translation to the associative realm is straightforward: triple
(A, π0, π1) with π0, π1 ∈ V2(A) double Poisson structures such that

[π0, π1] = 0 ∈ V3(A)

Classical method to manufacture bihamiltonian structures: π0 comes from
a symplectic form, π1 is built from π0 by means of a recursion operator
N : TM → TM whose Nijenhuis torsion vanishes:

TN(X ,Y ) := [N(X ),N(Y )]− N
(
[N(X ),Y ] + [X ,N(Y )]− N([X ,Y ])

)
In the associative realm, the recursion operator should be given by a
K-linear map N : V1(A)→ V1(A). Need some condition to ensure that the
result of N “depends linearly” on the source derivation...
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Associative bihamiltonian structures

Let us call a map N : V1(A)→ V1(A) regular if there exists a derivation
dN : A→ Ω1(A) such that, for every θ ∈ V1(A), the derivation N(θ)
factorizes as

A

N(θ)
$$

dN // Ω1(A)

iθ
��
A

This implies in particular that the transpose of N is well defined as the
unique map N∗ : DR1(A)→ DR1(A) such that

〈N∗(α), θ〉 = 〈α,N(θ)〉

(In fact dN induces a whole “deformed Cartan calculus” on DR•(A)...)
Now we can simply define a Nijenhuis tensor on A as a regular map
N : V1(A)→ V1(A) such that TN = 0.
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Associative bihamiltonian structures

So we have a notion of Nijenhuis tensor on an associative algebra A. If
some further compatibility conditions between π0 and N are satisfied, we
speak of a Poisson-Nijenhuis structure on Q.

Theorem (C. Bartocci, A.T, LMP 2017)

Let Q be a quiver and (π,N) a Poisson-Nijenhuis structure on it. Then
the bivector

πN(α, β) := π(N∗(α), β) = π(α,N∗(β))

is a double Poisson structure on A with [π0, π1] = 0.

As an example, the associative bihamiltonian structure for the rational CM
system is given by

π0 = ∂y∂x
π1 = y∂y∂x + x∂x∂x

with recursion operator N(θ)(x , y) = (yθ(x) + [θ(y), x ], θ(y)y).
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Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex
structures on a real manifold. Can we find an associative analogue also for
this construction?

Let Q be a quiver, A = RQ. A regular endomorphism I : V1(A)→ V1(A)
is a complex structure on Q provided that:

1 I 2 = − idV1(A),

2 TI = 0.

Basic example on Q, where Q is the quiver with one vertex and n loops:

I (θ)(a1, . . . , an, a
∗
1, . . . , a

∗
n) = (−θ(a∗1), . . . ,−θ(a∗n), θ(a1), . . . , θ(an))

This recovers the complex structure on RepRQ
d ' T Matd ,d(R)⊕n which

corresponds to the complex vector space Matd ,d(C)⊕n.
Clearly, more non-trivial examples are needed...
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Associative Kähler manifolds

Classically: quadruple (M, I , g , ω) with M (real) manifold, I integrable
complex structure, g Riemannian metric, ω symplectic form which satisfy
a number of compatibility conditions.

In our case it is natural to start from the data (A, I , ω) and recover the
“Riemannian metric” as

g(θ, η) := iI (η)(iθ(ω)) (θ, η ∈ V1(A))

then require the symmetry constraint g(θ, η)− g(η, θ) = 0 mod [A,A].
The basic example should again be the double of the n-loop quiver with I
defined as before, ω =

∑
i da
∗
i dai and

g(θ, η) =
∑
i

(θ(ai )η(ai ) + η(a∗i )θ(a∗i ))

Once the Kähler case is under control, one would like to proceed to the
hyper-Kähler case (relevant for Nakajima’s quiver varieties).
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Associative contact structures

What if the original dynamics depends explicitly on a “time” variable? This
situation arises, for instance, in the noncommutative Painlevé-Calogero
correspondence, where one deals with Hamiltonians such as

HII =
1

2
y2 − 1

2
(x2 +

t

2
)2 − θx

(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736)

Idea: instead of working in CQ = C〈x , y〉 one considers

A := C〈x , y , t〉/I

where I = (xt − tx , yt − ty). The canonical symplectic form on C〈x , y〉
then induces a double Poisson structure on A.
One expects to find a picture similar to the classical case, in which the
extended phase space of the system can be seen as a trivial bundle over a
line. This should correspond to dealing with associative algebras over a
1-dimensional polynomial ring.
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Thanks everybody!
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