Integrable systems and associative geometry

Alberto Tacchella
altacch@gmail.com

SISSA - December 19, 2017

Outline of the talk

(1) Mini-crash course on associative geometry
(2) Integrating systems by the projection method
(3) Some developments

Geometric objects on associative algebras

In ordinary (commutative) geometry:

- space X, sheaf \mathcal{O}_{X}, commutative algebra $A_{X}=\Gamma\left(\mathcal{O}_{X}\right)$
- tangent sheaf \mathcal{T}_{X}, vector fields $\mathcal{X}^{1}=\Gamma\left(\mathcal{T}_{X}\right)$, polyvector fields \mathcal{X}^{\bullet}
- cotangent sheaf Ω_{X}, 1-forms $\Omega^{1}=\Gamma\left(\Omega_{X}\right)$, differential forms Ω^{\bullet}

Geometric objects on associative algebras

In ordinary (commutative) geometry:

- space X, sheaf \mathcal{O}_{X}, commutative algebra $A_{X}=\Gamma\left(\mathcal{O}_{X}\right)$
- tangent sheaf \mathcal{T}_{X}, vector fields $\mathcal{X}^{1}=\Gamma\left(\mathcal{T}_{X}\right)$, polyvector fields \mathcal{X}^{\bullet}
- cotangent sheaf Ω_{X}, 1-forms $\Omega^{1}=\Gamma\left(\Omega_{X}\right)$, differential forms Ω^{\bullet} In associative geometry:
- space sheaf associative algebra A, vector space $A_{\natural}=A /[A, A]$
- graded vec.sp. $\mathcal{V}^{\bullet}(A)$, bracket $\left[\mathcal{V}^{p}(A), \mathcal{V}^{q}(A)\right] \subseteq \mathcal{V}^{p+q-1}(A)$
- graded vec.sp. $\mathrm{DR}^{\bullet}(A)$, differential $\mathrm{d}: \mathrm{DR}^{k}(A) \rightarrow \mathrm{DR}^{k+1}(A)$

Geometric objects on associative algebras

In ordinary (commutative) geometry:

- space X, sheaf \mathcal{O}_{X}, commutative algebra $A_{X}=\Gamma\left(\mathcal{O}_{X}\right)$
- tangent sheaf \mathcal{T}_{X}, vector fields $\mathcal{X}^{1}=\Gamma\left(\mathcal{T}_{X}\right)$, polyvector fields \mathcal{X}^{\bullet}
- cotangent sheaf Ω_{X}, 1-forms $\Omega^{1}=\Gamma\left(\Omega_{X}\right)$, differential forms Ω^{\bullet} In associative geometry:
- space sheaf associative algebra A, vector space $A_{\natural}=A /[A, A]$
- graded vec.sp. $\mathcal{V}^{\bullet}(A)$, bracket $\left[\mathcal{V}^{p}(A), \mathcal{V}^{q}(A)\right] \subseteq \mathcal{V}^{p+q-1}(A)$
- graded vec.sp. $\mathrm{DR}^{\bullet}(A)$, differential $\mathrm{d}: \mathrm{DR}^{k}(A) \rightarrow \mathrm{DR}^{k+1}(A)$ Enough to do:
- symplectic geometry: pair (A, ω) with $\omega \in \operatorname{DR}^{2}(A)$ such that $\mathrm{d} \omega=0$, $\operatorname{map} \theta \mapsto \omega(\theta,-)$ is invertible
- Poisson geometry: pair (A, π) with $\pi \in \mathcal{V}^{2}(A)$ such that $[\pi, \pi]=0$,

The route to ordinary manifolds

Family of affine schemes/varieties

$$
\operatorname{Rep}_{d}^{A}:=\operatorname{Hom}_{\mathbb{K}-\mathbf{A l g}}\left(A, \operatorname{Mat}_{d, d}(\mathbb{K})\right)
$$

with $\mathrm{GL}_{d}(\mathbb{K})$-action given by

$$
(g . \rho)(a):=g \rho(a) g^{-1}
$$

Moduli space of representations:

$$
\mathcal{R}_{d}^{A}:=\operatorname{Rep}_{d}^{A} / / \mathrm{GL}_{d}(\mathbb{K})
$$

The route to ordinary manifolds

Family of affine schemes/varieties

$$
\operatorname{Rep}_{d}^{A}:=\operatorname{Hom}_{\mathbb{K}-\mathbf{A l g}}\left(A, \operatorname{Mat}_{d, d}(\mathbb{K})\right)
$$

with $\mathrm{GL}_{d}(\mathbb{K})$-action given by

$$
(g . \rho)(a):=g \rho(a) g^{-1}
$$

Moduli space of representations:

$$
\mathcal{R}_{d}^{A}:=\operatorname{Rep}_{d}^{A} / / \mathrm{GL}_{d}(\mathbb{K})
$$

Associative-geometric objects on A induce GL_{d}-invariant objects on $\operatorname{Rep}_{d}^{A}$ (hence on \mathcal{R}_{d}^{A}):

$$
\begin{aligned}
A_{\natural} & \rightarrow \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]^{G L_{d}(\mathbb{K})} \\
\mathcal{V}^{p}(A) & \rightarrow\left\{\mathrm{GL}_{d} \text {-invariant } p \text {-vector fields on } \operatorname{Rep}_{d}^{A}\right\} \\
\mathrm{DR}^{p}(A) & \rightarrow\left\{\mathrm{GL}_{d} \text {-invariant } p \text {-forms on } \operatorname{Rep}_{d}^{A}\right\}
\end{aligned}
$$

The case of quiver path algebras

A quiver is just another name for a (directed, multi)graph (with loops).

The case of quiver path algebras

A quiver is just another name for a (directed, multi)graph (with loops).

Each quiver Q determines an associative algebra, the path algebra $\mathbb{K} Q$. Generated as a \mathbb{K}-vector space by paths (including the trivial ones), with product given by concatenation of paths

$$
b a \quad a^{3} \quad e d b a \quad c a^{2} e \quad a d=0 \quad \ldots
$$

The case of quiver path algebras

A quiver is just another name for a (directed, multi)graph (with loops).

Each quiver Q determines an associative algebra, the path algebra $\mathbb{K} Q$. Generated as a \mathbb{K}-vector space by paths (including the trivial ones), with product given by concatenation of paths

$$
b a \quad a^{3} \quad e d b a \quad c a^{2} e \quad a d=0
$$

We can then apply the above machinery and do (associative) geometry over quivers. This is in fact a particularly nice case, as quiver path algebras are always formally smooth ($\Rightarrow \operatorname{Rep}_{d}^{A}$ is always smooth).

Fundamentals of associative geometry on $\mathbb{K} Q$

A regular function $f \in A_{\natural}$ is a sum of necklace words in A, that is cycles in the quiver Q :

$$
b c a=c a b=a b c \quad b c b c=c b c b
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

A regular function $f \in A_{\natural}$ is a sum of necklace words in A, that is cycles in the quiver Q :

$$
b c a=c a b=a b c \quad b c b c=c b c b \quad \ldots
$$

For each arrow $x \in Q$ add a parallel arrow $\mathrm{d} x$. Define $\Omega^{p}(A)$ as the vector space spanned by the paths in this enlarged quiver with exactly p arrows of the form $\mathrm{d} x$:

$$
b c \mathrm{~d} b \quad a^{2} \mathrm{~d} b \mathrm{~d} c \quad \ldots
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

A regular function $f \in A_{\natural}$ is a sum of necklace words in A, that is cycles in the quiver Q :

$$
b c a=c a b=a b c \quad b c b c=c b c b
$$

For each arrow $x \in Q$ add a parallel arrow $\mathrm{d} x$. Define $\Omega^{p}(A)$ as the vector space spanned by the paths in this enlarged quiver with exactly p arrows of the form $\mathrm{d} x$:

$$
b c \mathrm{~d} b \quad a^{2} \mathrm{~d} b \mathrm{~d} c \quad \ldots
$$

To get $\operatorname{DR}^{p}(A)$ quotient out the linear subspaces $\left[\Omega^{k}(A), \Omega^{p-k}(A)\right]_{k=0 \ldots p}$ \Rightarrow the paths which are not closed become zero:

$$
\begin{gathered}
b c \mathrm{~d} b=[b c, \mathrm{~d} b]=0 \in \mathrm{DR}^{1}(A) \\
c a \mathrm{~d} b=a \mathrm{~d} b c=\mathrm{d} b c a \in \mathrm{DR}^{1}(A) \\
a^{2} \mathrm{~d} b \mathrm{~d} c=\mathrm{d} b \mathrm{~d} c a^{2}=-\mathrm{d} c a^{2} \mathrm{~d} b \in \mathrm{DR}^{2}(A)
\end{gathered}
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

For each arrow $x \in Q$ add an opposite arrow ∂_{x}. Define $\mathcal{D}^{p}(A)$ as the vector space spanned by the paths in this enlarged quiver with exactly p arrows of the form ∂_{x} :

$$
b c \partial_{a} \quad c \partial_{a} \partial_{c} \quad \ldots
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

For each arrow $x \in Q$ add an opposite arrow ∂_{x}. Define $\mathcal{D}^{p}(A)$ as the vector space spanned by the paths in this enlarged quiver with exactly p arrows of the form ∂_{x} :

$$
b c \partial_{a} \quad c \partial_{a} \partial_{c} \quad \ldots
$$

To get $\mathcal{V}^{p}(A)$ quotient out the linear subspaces $\left[\mathcal{D}^{k}(A), \mathcal{D}^{p-k}(A)\right]_{k=0 \ldots p}$ \Rightarrow again, the paths which are not closed become zero:

$$
\begin{gathered}
b c \partial_{a}=c \partial_{a} b=\partial_{a} b c \in \mathcal{V}^{1}(A) \\
c \partial_{a} \partial_{c}=\partial_{a} \partial_{c} c=-\partial_{c} c \partial_{a} \in \mathcal{V}^{2}(A)
\end{gathered}
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

For each arrow $x \in Q$ add an opposite arrow ∂_{x}. Define $\mathcal{D}^{p}(A)$ as the vector space spanned by the paths in this enlarged quiver with exactly p arrows of the form ∂_{x} :

$$
b c \partial_{a} \quad c \partial_{a} \partial_{c} \quad \ldots
$$

To get $\mathcal{V}^{p}(A)$ quotient out the linear subspaces $\left[\mathcal{D}^{k}(A), \mathcal{D}^{p-k}(A)\right]_{k=0 \ldots p}$ \Rightarrow again, the paths which are not closed become zero:

$$
\begin{gathered}
b c \partial_{a}=c \partial_{a} b=\partial_{a} b c \in \mathcal{V}^{1}(A) \\
c \partial_{a} \partial_{c}=\partial_{a} \partial_{c} c=-\partial_{c} c \partial_{a} \in \mathcal{V}^{2}(A)
\end{gathered}
$$

The pairing between a 1 -form $\alpha=\sum_{x \in Q} r_{x} \mathrm{~d} x$ and a vector field $\theta=\sum_{x \in Q} p_{x} \partial_{x}$ is then given by

$$
\langle\alpha, \theta\rangle=\sum_{x \in Q} r_{x} p_{x} \in A_{\natural}
$$

Induced objects on representation spaces

$$
(A, B, C) \in \operatorname{Rep}_{(n, r)}^{A}=\operatorname{Mat}_{n, n}(\mathbb{K}) \oplus \operatorname{Mat}_{n, r}(\mathbb{K}) \oplus \operatorname{Mat}_{r, n}(\mathbb{K})
$$

Induced objects on representation spaces

$$
(A, B, C) \in \operatorname{Rep}_{(n, r)}^{A}=\operatorname{Mat}_{n, n}(\mathbb{K}) \oplus \operatorname{Mat}_{n, r}(\mathbb{K}) \oplus \operatorname{Mat}_{r, n}(\mathbb{K})
$$

- objects in $\Omega^{\bullet}(A)$ and $\mathcal{D}^{\bullet}(A)$ induce "matrix-valued objects":

$$
\begin{aligned}
& p=b c a \in A \\
& \alpha=b c \mathrm{~d} b \in \Omega^{1}(A) \\
& \omega=a^{2} \mathrm{~d} b \mathrm{~d} c \in \Omega^{2}(A) \\
& \theta=b c \partial_{a} \in \mathcal{D}^{1}(A) \\
& \pi=a \partial_{c} \partial_{b} \in \mathcal{D}^{2}(A)
\end{aligned}
$$

$$
\hat{p}(A, B, C)=B C A
$$

$$
\hat{\alpha}(A, B, C)=B C \mathrm{~d} B
$$

$$
\hat{\omega}(A, B, C)=A^{2} \mathrm{~d} B \wedge \mathrm{~d} C
$$

$$
\hat{\theta}(A, B, C)=B C \frac{\partial}{\partial A}
$$

$$
\hat{\pi}(A, B, C)=A \frac{\partial}{\partial C} \wedge \frac{\partial}{\partial B}
$$

Induced objects on representation spaces

$$
(A, B, C) \in \operatorname{Rep}_{(n, r)}^{A}=\operatorname{Mat}_{n, n}(\mathbb{K}) \oplus \operatorname{Mat}_{n, r}(\mathbb{K}) \oplus \operatorname{Mat}_{r, n}(\mathbb{K})
$$

- objects in $\Omega^{\bullet}(A)$ and $\mathcal{D}^{\bullet}(A)$ induce "matrix-valued objects":

$$
\begin{aligned}
& p=b c a \in A \\
& \alpha=b c \mathrm{~d} b \in \Omega^{1}(A) \\
& \omega=a^{2} \mathrm{~d} b \mathrm{~d} c \in \Omega^{2}(A) \\
& \theta=b c \partial_{a} \in \mathcal{D}^{1}(A) \\
& \pi=a \partial_{c} \partial_{b} \in \mathcal{D}^{2}(A)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{p}(A, B, C)=B C A \\
& \hat{\alpha}(A, B, C)=B C \mathrm{~d} B \\
& \hat{\omega}(A, B, C)=A^{2} \mathrm{~d} B \wedge \mathrm{~d} C \\
& \hat{\theta}(A, B, C)=B C \frac{\partial}{\partial A} \\
& \hat{\pi}(A, B, C)=A \frac{\partial}{\partial C} \wedge \frac{\partial}{\partial B}
\end{aligned}
$$

- the passage to $\mathrm{DR}^{\bullet}(A)$ and $\mathcal{V}^{\bullet}(A)$ corresponds to "taking traces":

$$
\begin{array}{ll}
p=b c a \in A_{\natural} & \hat{\hat{p}}(A, B, C)=\operatorname{tr} B C A \in \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right] \\
\alpha=b c \mathrm{~d} b \in \operatorname{DR}^{1}(A) & \hat{\hat{\alpha}}(A, B, C)=\operatorname{tr} B C \mathrm{~d} B \in \Omega^{1}\left(\operatorname{Rep}_{d}^{A}\right) \\
\omega=a^{2} \mathrm{~d} b \mathrm{~d} c \in \operatorname{DR}^{2}(A) & \hat{\hat{\omega}}(A, B, C)=\operatorname{tr} A^{2} \mathrm{~d} B \wedge \mathrm{~d} C \in \Omega^{2}\left(\operatorname{Rep}_{d}^{A}\right) \\
\theta=b c \partial_{a} \in \mathcal{V}^{1}(A) & \hat{\hat{\theta}}(A, B, C)=\operatorname{tr} B C \frac{\partial}{\partial A} \in \mathcal{X}^{1}\left(\operatorname{Rep}_{d}^{A}\right) \\
\pi=a \partial_{c} \partial_{b} \in \mathcal{V}^{2}(A) & \hat{\hat{\pi}}(A, B, C)=\operatorname{tr} A \frac{\partial}{\partial C} \wedge \frac{\partial}{\partial B} \in \mathcal{X}^{2}\left(\operatorname{Rep}_{d}^{A}\right)
\end{array}
$$

Bonus: all these quantities are automatically GL-invariant.

Dynamical systems on a quiver

Definition

A dynamical system on a quiver Q is an element of $\mathcal{V}^{1}(\mathbb{K} Q)$ (that is, a derivation $\mathbb{K} Q \rightarrow \mathbb{K} Q$).

Every dynamical system θ on Q induces a family of GL_{d}-invariant global vector fields on representation spaces of $A=\mathbb{K} Q$:

$$
\hat{\hat{\theta}}_{d} \in \mathcal{X}^{1}\left(\operatorname{Rep}_{d}^{A}\right)
$$

whose flows are obtained by solving a system of matrix ODEs.

Dynamical systems on a quiver

Definition

A dynamical system on a quiver Q is an element of $\mathcal{V}^{1}(\mathbb{K} Q)$ (that is, a derivation $\mathbb{K} Q \rightarrow \mathbb{K} Q$).

Every dynamical system θ on Q induces a family of GL_{d}-invariant global vector fields on representation spaces of $A=\mathbb{K} Q$:

$$
\hat{\hat{\theta}}_{d} \in \mathcal{X}^{1}\left(\operatorname{Rep}_{d}^{A}\right)
$$

whose flows are obtained by solving a system of matrix ODEs. If we have a symplectic or Poisson structure on A then each regular function $H \in A_{\natural}$ automatically determines a corresponding "Hamiltonian derivation" θ_{H} given by

$$
i_{\theta_{H}}(\omega)=-\mathrm{d} H \quad \text { resp. } \quad \pi(\mathrm{d} H,-)
$$

\Rightarrow can speak of "Hamiltonian systems" on Q.

The projection method

A method to integrate Hamiltonian systems using the symplectic reduction of larger (and easier to solve) systems.

- Olshanetsky and Perelomov, Invent. Math. 37 (1976)
- Kazhdan, Kostant and Sternberg, CPAM 31 (1978)
- Olshanetsky and Perelomov, Phys. Rep. 71 (1981)

The projection method

A method to integrate Hamiltonian systems using the symplectic reduction of larger (and easier to solve) systems.

- Olshanetsky and Perelomov, Invent. Math. 37 (1976)
- Kazhdan, Kostant and Sternberg, CPAM 31 (1978)
- Olshanetsky and Perelomov, Phys. Rep. 71 (1981)

Natural reinterpretation in associative geometry: given a derivation θ on A,

$$
\begin{gathered}
\text { Integration of } \\
\hat{\theta}_{d} \text { on } \operatorname{Rep}_{d}^{A}
\end{gathered} \sim \begin{gathered}
\text { Integration of } \\
\hat{\hat{\theta}}_{d} \text { on } \mathcal{R}_{d}^{A}
\end{gathered}
$$

Need to reduce also the symplectic (Poisson, bihamiltonian...) structure along with the flow. This may complicate the construction of the manifold \mathcal{R}_{d}^{A}; in the simplest situations it will be an ordinary (Marsden-Weinstein) symplectic quotient.

Example: rational CM system

Take Q quiver with two loops, $A=\mathbb{C}\langle x, y\rangle, \omega=\mathrm{d} y \mathrm{~d} x$. Free motion on A is given by $H=\frac{1}{2} y^{2}$, so that $\theta_{H}=y \partial_{x}$. Flow on $\operatorname{Rep}_{d}^{A} \simeq T^{*} \operatorname{Mat}_{d, d}(\mathbb{C})$ is simply

$$
X(t)=Y(0) t+X(0)
$$

Example: rational CM system

Take Q quiver with two loops, $A=\mathbb{C}\langle x, y\rangle, \omega=\mathrm{d} y \mathrm{~d} x$. Free motion on A is given by $H=\frac{1}{2} y^{2}$, so that $\theta_{H}=y \partial_{x}$. Flow on $\operatorname{Rep}_{d}^{A} \simeq T^{*} \operatorname{Mat}_{d, d}(\mathbb{C})$ is simply

$$
X(t)=Y(0) t+X(0)
$$

Now we select a (co)adjoint orbit in $\mathfrak{g l}_{d}(\mathbb{C})$ and perform a symplectic quotient via the momentum map

$$
\mu: \operatorname{Rep}_{d}^{A} \rightarrow \mathfrak{g l}_{d}(\mathbb{C}) \quad \mu(X, Y)=[X, Y]
$$

Let $\mathbb{O}_{1}:=$ adjoint orbit of minimal dimension in $\mathfrak{g l}_{d}(\mathbb{C})$. Then

$$
\mathcal{C}_{d}:=\mu^{-1}\left(\mathbb{O}_{1}\right) / \mathrm{GL}_{d}(\mathbb{C})
$$

is a smooth symplectic manifold of dimension $2 d$.

Example: rational CM system

Take Q quiver with two loops, $A=\mathbb{C}\langle x, y\rangle, \omega=\mathrm{d} y \mathrm{~d} x$. Free motion on A is given by $H=\frac{1}{2} y^{2}$, so that $\theta_{H}=y \partial_{x}$. Flow on $\operatorname{Rep}_{d}^{A} \simeq T^{*} \operatorname{Mat}_{d, d}(\mathbb{C})$ is simply

$$
X(t)=Y(0) t+X(0)
$$

Now we select a (co)adjoint orbit in $\mathfrak{g l}_{d}(\mathbb{C})$ and perform a symplectic quotient via the momentum map

$$
\mu: \operatorname{Rep}_{d}^{A} \rightarrow \mathfrak{g l}_{d}(\mathbb{C}) \quad \mu(X, Y)=[X, Y]
$$

Let $\mathbb{O}_{1}:=$ adjoint orbit of minimal dimension in $\mathfrak{g l}_{d}(\mathbb{C})$. Then

$$
\mathcal{C}_{d}:=\mu^{-1}\left(\mathbb{O}_{1}\right) / \mathrm{GL}_{d}(\mathbb{C})
$$

is a smooth symplectic manifold of dimension $2 d$. The open dense subset where X is diagonalizable is symplectomorphic to $T^{*} \mathbb{C}^{(d)}$ and the above flow corresponds to the flow determined by

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j} \frac{1}{\left(q_{i}-q_{j}\right)^{2}}
$$

Example: rational CM system

If we select a bigger adjoint orbit in $\mathfrak{g l}_{d}(\mathbb{C})$: singular simplectic reduction (Hochgerner) leads to Calogero-Moser systems with "spin variables"

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j} \frac{\lambda_{i j}^{2}}{\left(q_{i}-q_{j}\right)^{2}}
$$

Example: rational CM system

If we select a bigger adjoint orbit in $\mathfrak{g l}_{d}(\mathbb{C})$: singular simplectic reduction (Hochgerner) leads to Calogero-Moser systems with "spin variables"

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j} \frac{\lambda_{i j}^{2}}{\left(q_{i}-q_{j}\right)^{2}}
$$

More generally we could take $H=\frac{1}{2} y^{2}+p(x)$, with p polynomial which plays the role of "external potential" after the reduction step. One then needs to solve the matrix ODE

$$
\ddot{X}+p^{\prime}(X)=0
$$

which is possible e.g. when $p(x)=\omega^{2} x^{2}$ (harmonic potential), obtaining

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j}\left(\frac{1}{\left(q_{i}-q_{j}\right)^{2}}+\omega^{2}\left(q_{i}-q_{j}\right)^{2}\right)
$$

Example: trigonometric CM system

Now take (A, π) where $\pi=y \partial_{y} \partial_{y}+x \partial_{y} \partial_{x}$. On the open subset $\mathcal{U} \subset \operatorname{Rep}_{d}^{A}$ where X is invertible the induced Poisson bivector $\hat{\pi}$ is non degenerate. The corresponding symplectic form reads

$$
\omega_{(X, Y)}=\operatorname{tr}\left(\mathrm{d} Y \wedge X^{-1} \mathrm{~d} X-Y X^{-1} \mathrm{~d} X \wedge X^{-1} \mathrm{~d} X\right)
$$

which is the canonical form on $T^{*} G L_{d}(\mathbb{C})$ if we identify this (trivial) bundle with $\mathcal{U}=\mathrm{GL}_{d}(\mathbb{C}) \times \mathrm{Mat}_{d, d}(\mathbb{C})$ by means of left translations.

Example: trigonometric CM system

Now take (A, π) where $\pi=y \partial_{y} \partial_{y}+x \partial_{y} \partial_{x}$. On the open subset $\mathcal{U} \subset \operatorname{Rep}_{d}^{A}$ where X is invertible the induced Poisson bivector $\hat{\pi}$ is non degenerate. The corresponding symplectic form reads

$$
\omega_{(X, Y)}=\operatorname{tr}\left(\mathrm{d} Y \wedge X^{-1} \mathrm{~d} X-Y X^{-1} \mathrm{~d} X \wedge X^{-1} \mathrm{~d} X\right)
$$

which is the canonical form on $T^{*} G L_{d}(\mathbb{C})$ if we identify this (trivial) bundle with $\mathcal{U}=\mathrm{GL}_{d}(\mathbb{C}) \times \mathrm{Mat}_{d, d}(\mathbb{C})$ by means of left translations. We perform again a symplectic quotient with respect to the action of $\mathrm{GL}_{d}(\mathbb{C})$, but this time using the momentum map

$$
\mu: \mathcal{U} \rightarrow \mathfrak{g l}_{d}(\mathbb{C}) \quad \mu(X, Y)=X Y X^{-1}-Y
$$

We obtain another smooth symplectic manifold of dimension $2 d$

$$
\mathcal{C}_{d}^{t r}:=\mu^{-1}\left(\mathbb{O}_{1}\right) / \mathrm{GL}_{d}(\mathbb{C})
$$

Example: trigonometric CM system

Taking again $H=\frac{1}{2} y^{2}$, the projection of the flow on the open dense subset of $\mathcal{C}_{d}^{t r}$ where X is diagonalizable corresponds to the flow determined by

$$
\left.H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j}\left(\sin \left(q_{i}-q_{j}\right)\right)^{-2} \quad \text { (and/or } \sinh \right)
$$

Reducing on bigger adjoint orbits: trigonometric CM systems with spin.

Example: trigonometric CM system

Taking again $H=\frac{1}{2} y^{2}$, the projection of the flow on the open dense subset of $\mathcal{C}_{d}^{\text {tr }}$ where X is diagonalizable corresponds to the flow determined by

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j}\left(\sin \left(q_{i}-q_{j}\right)\right)^{-2} \quad(\text { and } / \text { or } \sinh)
$$

Reducing on bigger adjoint orbits: trigonometric CM systems with spin. We can also consider the "dual" open dense subset of $\mathcal{C}_{d}^{t r}$ where Y is diagonalizable. The flows determined on this subset by the functions $H_{k}=x^{k}$ coincide with the flows determined by the light-cone Hamiltonans for the rational Ruijsenaars-Schneider system:

$$
S_{k}=\sum_{\substack{I \subseteq\{1, \ldots, n\} \\|1|=k}} \mathrm{e}^{\sum_{i \in I} p_{i}} \prod_{\substack{i \in I \\ j \neq I}} \sqrt{1+\frac{g^{2}}{\left(x_{i}-x_{j}\right)^{2}}}
$$

This is related to the Ruijsenaars duality which holds between these two systems.

Example: GH system

Take $A=\mathbb{C} \boldsymbol{Q}_{r}$, where \boldsymbol{Q}_{r} is the double of the quiver

with canonical symplectic form $\omega=\mathrm{d} a^{*} \mathrm{~d} a+\mathrm{d} x^{*} \mathrm{~d} x+\sum_{i=2}^{r} \mathrm{~d} y_{i}^{*} \mathrm{~d} y_{i}$.

Example: GH system

Take $A=\mathbb{C} \boldsymbol{Q}_{r}$, where \boldsymbol{Q}_{r} is the double of the quiver

with canonical symplectic form $\omega=\mathrm{d} a^{*} \mathrm{~d} a+\mathrm{d} x^{*} \mathrm{~d} x+\sum_{i=2}^{r} \mathrm{~d} y_{i}^{*} \mathrm{~d} y_{i}$. Points in $\operatorname{Rep}_{(n, 1)}^{A}$ are tuples $\left(X, Y, v_{1}, w_{2}, \ldots, w_{r}, w_{1}, v_{2}, \ldots, v_{r}\right)$; the relevant momentum map is

$$
\mu\left(X, Y, v_{\alpha}, w_{\alpha}\right)=[X, Y]+v_{1} w_{1}-\sum_{i=2}^{r} v_{i} w_{i}
$$

Example: GH system

Take $A=\mathbb{C} \boldsymbol{Q}_{r}$, where \boldsymbol{Q}_{r} is the double of the quiver

with canonical symplectic form $\omega=\mathrm{d} a^{*} \mathrm{~d} a+\mathrm{d} x^{*} \mathrm{~d} x+\sum_{i=2}^{r} \mathrm{~d} y_{i}^{*} \mathrm{~d} y_{i}$. Points in $\operatorname{Rep}_{(n, 1)}^{A}$ are tuples $\left(X, Y, v_{1}, w_{2}, \ldots, w_{r}, w_{1}, v_{2}, \ldots, v_{r}\right)$; the relevant momentum map is

$$
\mu\left(X, Y, v_{\alpha}, w_{\alpha}\right)=[X, Y]+v_{1} w_{1}-\sum_{i=2}^{r} v_{i} w_{i}
$$

The flow induced by the Hamiltonian $\frac{1}{2} a^{* 2}$ on $\operatorname{Rep}_{(d, 1)}^{A}$ is

$$
\Phi_{t}\left(X, Y, v_{\alpha}, w_{\alpha}\right)=\left(X+t Y, Y, v_{\alpha}, w_{\alpha}\right)
$$

On the quotient $\mu^{-1}(\tau I) / / \mathrm{GL}_{d}(\mathbb{C})$ it reduces to

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}+\frac{\tau^{2}}{2} \sum_{i \neq j} \frac{\left\langle f_{i}, e_{j}\right\rangle\left\langle f_{j}, e_{i}\right\rangle}{\left(q_{i}-q_{j}\right)^{2}}
$$

Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)

Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)
The translation to the associative realm is straightforward: triple (A, π_{0}, π_{1}) with $\pi_{0}, \pi_{1} \in \mathcal{V}^{2}(A)$ double Poisson structures such that

$$
\left[\pi_{0}, \pi_{1}\right]=0 \in \mathcal{V}^{3}(A)
$$

Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)
The translation to the associative realm is straightforward: triple (A, π_{0}, π_{1}) with $\pi_{0}, \pi_{1} \in \mathcal{V}^{2}(A)$ double Poisson structures such that

$$
\left[\pi_{0}, \pi_{1}\right]=0 \in \mathcal{V}^{3}(A)
$$

Classical method to manufacture bihamiltonian structures: π_{0} comes from a symplectic form, π_{1} is built from π_{0} by means of a recursion operator $N: T M \rightarrow T M$ whose Nijenhuis torsion vanishes:

$$
\mathcal{T}_{N}(X, Y):=[N(X), N(Y)]-N([N(X), Y]+[X, N(Y)]-N([X, Y]))
$$

Associative bihamiltonian structures

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)
The translation to the associative realm is straightforward: triple $\left(A, \pi_{0}, \pi_{1}\right)$ with $\pi_{0}, \pi_{1} \in \mathcal{V}^{2}(A)$ double Poisson structures such that

$$
\left[\pi_{0}, \pi_{1}\right]=0 \in \mathcal{V}^{3}(A)
$$

Classical method to manufacture bihamiltonian structures: π_{0} comes from a symplectic form, π_{1} is built from π_{0} by means of a recursion operator $N: T M \rightarrow T M$ whose Nijenhuis torsion vanishes:

$$
\mathcal{T}_{N}(X, Y):=[N(X), N(Y)]-N([N(X), Y]+[X, N(Y)]-N([X, Y]))
$$

In the associative realm, the recursion operator should be given by a \mathbb{K}-linear $\operatorname{map} N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$. Need some condition to ensure that the result of N "depends linearly" on the source derivation...

Associative bihamiltonian structures

Let us call a $\operatorname{map} N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ regular if there exists a derivation $\mathrm{d}^{N}: A \rightarrow \Omega^{1}(A)$ such that, for every $\theta \in \mathcal{V}^{1}(A)$, the derivation $N(\theta)$ factorizes as

Associative bihamiltonian structures

Let us call a $\operatorname{map} N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ regular if there exists a derivation $\mathrm{d}^{N}: A \rightarrow \Omega^{1}(A)$ such that, for every $\theta \in \mathcal{V}^{1}(A)$, the derivation $N(\theta)$ factorizes as

This implies in particular that the transpose of N is well defined as the unique map $N^{*}: \mathrm{DR}^{1}(A) \rightarrow \mathrm{DR}^{1}(A)$ such that

$$
\left\langle N^{*}(\alpha), \theta\right\rangle=\langle\alpha, N(\theta)\rangle
$$

(In fact d^{N} induces a whole "deformed Cartan calculus" on $\operatorname{DR}^{\bullet}(A) \ldots$)

Associative bihamiltonian structures

Let us call a $\operatorname{map} N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ regular if there exists a derivation $\mathrm{d}^{N}: A \rightarrow \Omega^{1}(A)$ such that, for every $\theta \in \mathcal{V}^{1}(A)$, the derivation $N(\theta)$ factorizes as

This implies in particular that the transpose of N is well defined as the unique map $N^{*}: \mathrm{DR}^{1}(A) \rightarrow \mathrm{DR}^{1}(A)$ such that

$$
\left\langle N^{*}(\alpha), \theta\right\rangle=\langle\alpha, N(\theta)\rangle
$$

(In fact d ${ }^{N}$ induces a whole "deformed Cartan calculus" on $\operatorname{DR}^{\bullet}(A) \ldots$) Now we can simply define a Nijenhuis tensor on A as a regular map $N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ such that $\mathcal{T}_{N}=0$.

Associative bihamiltonian structures

So we have a notion of Nijenhuis tensor on an associative algebra A. If some further compatibility conditions between π_{0} and N are satisfied, we speak of a Poisson-Nijenhuis structure on Q.

Theorem (C. Bartocci, A.T, LMP 2017)

Let Q be a quiver and (π, N) a Poisson-Nijenhuis structure on it. Then the bivector

$$
\pi^{N}(\alpha, \beta):=\pi\left(N^{*}(\alpha), \beta\right)=\pi\left(\alpha, N^{*}(\beta)\right)
$$

is a double Poisson structure on A with $\left[\pi_{0}, \pi_{1}\right]=0$.

Associative bihamiltonian structures

So we have a notion of Nijenhuis tensor on an associative algebra A. If some further compatibility conditions between π_{0} and N are satisfied, we speak of a Poisson-Nijenhuis structure on Q.

Theorem (C. Bartocci, A.T, LMP 2017)

Let Q be a quiver and (π, N) a Poisson-Nijenhuis structure on it. Then the bivector

$$
\pi^{N}(\alpha, \beta):=\pi\left(N^{*}(\alpha), \beta\right)=\pi\left(\alpha, N^{*}(\beta)\right)
$$

is a double Poisson structure on A with $\left[\pi_{0}, \pi_{1}\right]=0$.
As an example, the associative bihamiltonian structure for the rational CM system is given by

$$
\begin{aligned}
& \pi_{0}=\partial_{y} \partial_{x} \\
& \pi_{1}=y \partial_{y} \partial_{x}+x \partial_{x} \partial_{x}
\end{aligned}
$$

with recursion operator $N(\theta)(x, y)=(y \theta(x)+[\theta(y), x], \theta(y) y)$.

Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex structures on a real manifold. Can we find an associative analogue also for this construction?

Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex structures on a real manifold. Can we find an associative analogue also for this construction?
Let Q be a quiver, $A=\mathbb{R} Q$. A regular endomorphism $I: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ is a complex structure on Q provided that:
(1) $I^{2}=-\operatorname{id}_{\mathcal{V}^{1}(A)}$,
(2) $\mathcal{T}_{I}=0$.

Associative complex structures

Nijenhuis torsion is also used to give a notion of integrability for complex structures on a real manifold. Can we find an associative analogue also for this construction?
Let Q be a quiver, $A=\mathbb{R} Q$. A regular endomorphism $I: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ is a complex structure on Q provided that:
(1) $I^{2}=-\operatorname{id}_{\mathcal{V}^{1}(A)}$,
(2) $\mathcal{T}_{1}=0$.

Basic example on \bar{Q}, where Q is the quiver with one vertex and n loops:

$$
I(\theta)\left(a_{1}, \ldots, a_{n}, a_{1}^{*}, \ldots, a_{n}^{*}\right)=\left(-\theta\left(a_{1}^{*}\right), \ldots,-\theta\left(a_{n}^{*}\right), \theta\left(a_{1}\right), \ldots, \theta\left(a_{n}\right)\right)
$$

This recovers the complex structure on $\operatorname{Rep}_{d}^{\mathbb{R} \bar{Q}} \simeq T$ Mat ${ }_{d, d}(\mathbb{R})^{\oplus n}$ which corresponds to the complex vector space Mat ${ }_{d, d}(\mathbb{C})^{\oplus n}$.
Clearly, more non-trivial examples are needed...

Associative Kähler manifolds

Classically: quadruple (M, I, g, ω) with M (real) manifold, I integrable complex structure, g Riemannian metric, ω symplectic form which satisfy a number of compatibility conditions.

Associative Kähler manifolds

Classically: quadruple (M, I, g, ω) with M (real) manifold, I integrable complex structure, g Riemannian metric, ω symplectic form which satisfy a number of compatibility conditions.
In our case it is natural to start from the data (A, I, ω) and recover the "Riemannian metric" as

$$
g(\theta, \eta):=i_{I(\eta)}\left(i_{\theta}(\omega)\right) \quad\left(\theta, \eta \in \mathcal{V}^{1}(A)\right)
$$

then require the symmetry constraint $g(\theta, \eta)-g(\eta, \theta)=0 \bmod [A, A]$.

Associative Kähler manifolds

Classically: quadruple (M, I, g, ω) with M (real) manifold, I integrable complex structure, g Riemannian metric, ω symplectic form which satisfy a number of compatibility conditions.
In our case it is natural to start from the data (A, I, ω) and recover the "Riemannian metric" as

$$
g(\theta, \eta):=i_{I(\eta)}\left(i_{\theta}(\omega)\right) \quad\left(\theta, \eta \in \mathcal{V}^{1}(A)\right)
$$

then require the symmetry constraint $g(\theta, \eta)-g(\eta, \theta)=0 \bmod [A, A]$. The basic example should again be the double of the n-loop quiver with I defined as before, $\omega=\sum_{i} \mathrm{~d} a_{i}^{*} \mathrm{~d} a_{i}$ and

$$
g(\theta, \eta)=\sum_{i}\left(\theta\left(a_{i}\right) \eta\left(a_{i}\right)+\eta\left(a_{i}^{*}\right) \theta\left(a_{i}^{*}\right)\right)
$$

Once the Kähler case is under control, one would like to proceed to the hyper-Kähler case (relevant for Nakajima's quiver varieties).

Associative contact structures

What if the original dynamics depends explicitly on a "time" variable? This situation arises, for instance, in the noncommutative Painlevé-Calogero correspondence, where one deals with Hamiltonians such as

$$
H_{I I}=\frac{1}{2} y^{2}-\frac{1}{2}\left(x^{2}+\frac{t}{2}\right)^{2}-\theta x
$$

(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736)

Associative contact structures

What if the original dynamics depends explicitly on a "time" variable? This situation arises, for instance, in the noncommutative Painlevé-Calogero correspondence, where one deals with Hamiltonians such as

$$
H_{I I}=\frac{1}{2} y^{2}-\frac{1}{2}\left(x^{2}+\frac{t}{2}\right)^{2}-\theta x
$$

(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736) Idea: instead of working in $\mathbb{C} Q=\mathbb{C}\langle x, y\rangle$ one considers

$$
A:=\mathbb{C}\langle x, y, t\rangle / l
$$

where $I=(x t-t x, y t-t y)$. The canonical symplectic form on $\mathbb{C}\langle x, y\rangle$ then induces a double Poisson structure on A.

Associative contact structures

What if the original dynamics depends explicitly on a "time" variable? This situation arises, for instance, in the noncommutative Painlevé-Calogero correspondence, where one deals with Hamiltonians such as

$$
H_{I I}=\frac{1}{2} y^{2}-\frac{1}{2}\left(x^{2}+\frac{t}{2}\right)^{2}-\theta x
$$

(cf. Bertola, Cafasso and Roubtsov, arXiv:1710.00736) Idea: instead of working in $\mathbb{C} Q=\mathbb{C}\langle x, y\rangle$ one considers

$$
A:=\mathbb{C}\langle x, y, t\rangle / l
$$

where $I=(x t-t x, y t-t y)$. The canonical symplectic form on $\mathbb{C}\langle x, y\rangle$ then induces a double Poisson structure on A.
One expects to find a picture similar to the classical case, in which the extended phase space of the system can be seen as a trivial bundle over a line. This should correspond to dealing with associative algebras over a 1-dimensional polynomial ring.

Thanks everybody!

