Group actions on the moduli spaces of noncommutative instantons

Alberto Tacchella ICMC - USP São Carlos
tacchella@icmc.usp.br

> SWAGP 2013 - CIMAT
> January 24, 2013

The Calogero-Moser correspondence

The higher rank case

Work in progress

The varieties $\mathcal{C}_{n, r}$

Take $n, r \in \mathbb{N}$ and the vector space

$$
\begin{aligned}
V_{n, r} & =\operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, r}(\mathbb{C}) \oplus \operatorname{Mat}_{r, n}(\mathbb{C}) \\
& =T^{*}\left(\operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, r}(\mathbb{C})\right)
\end{aligned}
$$

The varieties $\mathcal{C}_{n, r}$

Take $n, r \in \mathbb{N}$ and the vector space

$$
\begin{aligned}
V_{n, r} & =\operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, r}(\mathbb{C}) \oplus \operatorname{Mat}_{r, n}(\mathbb{C}) \\
& =T^{*}\left(\operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, r}(\mathbb{C})\right)
\end{aligned}
$$

We consider the action of $G L_{n}(\mathbb{C})$ on $V_{n, r}$ given by

$$
G .(X, Y, v, w)=\left(G X G^{-1}, G Y G^{-1}, G v, w G^{-1}\right)
$$

It is Hamiltonian with moment map $V_{n, r} \rightarrow \mathfrak{g l}_{n}(\mathbb{C})$ given by

$$
\mu(X, Y, v, w)=[X, Y]+v w
$$

The varieties $\mathcal{C}_{n, r}$

Take $n, r \in \mathbb{N}$ and the vector space

$$
\begin{aligned}
V_{n, r} & =\operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, r}(\mathbb{C}) \oplus \operatorname{Mat}_{r, n}(\mathbb{C}) \\
& =T^{*}\left(\operatorname{Mat}_{n, n}(\mathbb{C}) \oplus \operatorname{Mat}_{n, r}(\mathbb{C})\right)
\end{aligned}
$$

We consider the action of $G L_{n}(\mathbb{C})$ on $V_{n, r}$ given by

$$
G .(X, Y, v, w)=\left(G X G^{-1}, G Y G^{-1}, G v, w G^{-1}\right)
$$

It is Hamiltonian with moment map $V_{n, r} \rightarrow \mathfrak{g l}_{n}(\mathbb{C})$ given by

$$
\mu(X, Y, v, w)=[X, Y]+v w
$$

For every $\tau \in \mathbb{C}^{*}$ the action of $\mathrm{GL}_{n}(\mathbb{C})$ on $\mu^{-1}(\tau I)$ is free, so by Marsden-Weinstein we have a smooth symplectic manifold of dimension $2 n r$

$$
\mathcal{C}_{n, r}=\mu^{-1}(\tau I) / \mathrm{GL}_{n}(\mathbb{C})
$$

The varieties $\mathcal{C}_{n, r}$

This family of varieties appears in a number of different contexts:

- as the moduli space of $\operatorname{SU}(r)$ instantons on a noncommutative \mathbb{R}^{4} (Nekrasov-Schwarz);

The varieties $\mathcal{C}_{n, r}$

This family of varieties appears in a number of different contexts:

- as the moduli space of $\operatorname{SU}(r)$ instantons on a noncommutative \mathbb{R}^{4} (Nekrasov-Schwarz);
- as the moduli space of framed torsion-free sheaves on $\mathbb{C} P^{2}$ with rank r and $c_{2}=n$ (Nakajima);

The varieties $\mathcal{C}_{n, r}$

This family of varieties appears in a number of different contexts:

- as the moduli space of $\operatorname{SU}(r)$ instantons on a noncommutative \mathbb{R}^{4} (Nekrasov-Schwarz);
- as the moduli space of framed torsion-free sheaves on $\mathbb{C} P^{2}$ with rank r and $c_{2}=n$ (Nakajima);
- as a completion of the phase space of the n-particles, r-components Gibbons-Hermsen integrable system (Wilson);

The varieties $\mathcal{C}_{n, r}$

This family of varieties appears in a number of different contexts:

- as the moduli space of $\operatorname{SU}(r)$ instantons on a noncommutative \mathbb{R}^{4} (Nekrasov-Schwarz);
- as the moduli space of framed torsion-free sheaves on $\mathbb{C} P^{2}$ with rank r and $c_{2}=n$ (Nakajima);
- as a completion of the phase space of the n-particles, r-components Gibbons-Hermsen integrable system (Wilson);
- as a moduli space of a certain kind of sub- A_{1}-modules of $\left(B_{1}\right)^{r}$, where

$$
A_{1}:=\frac{\mathbb{C}\langle x, y\rangle}{(x y-y x-1)}
$$

and B_{1} is the localization of A_{1} w.r.t. nonzero polynomials (Baranovsky-Ginzburg-Kuznetsov).

The case $r=1$

The space $\mathcal{C}:=\bigsqcup_{n \in \mathbb{N}} \mathcal{C}_{n, 1}$ is in bijection with the moduli space of isomorphism classes of right ideals in A_{1}. Moreover, the natural action of the group Aut A_{1} on \mathcal{C} is transitive.

The case $r=1$

The space $\mathcal{C}:=\bigsqcup_{n \in \mathbb{N}} \mathcal{C}_{n, 1}$ is in bijection with the moduli space of isomorphism classes of right ideals in A_{1}. Moreover, the natural action of the group Aut A_{1} on \mathcal{C} is transitive.
The group Aut A_{1} is generated by the family of automorphisms

$$
\Phi_{p} \quad \text { defined by } \quad\left\{\begin{array}{l}
x \mapsto x-p^{\prime}(y) \\
y \mapsto y
\end{array}\right.
$$

together with the "formal Fourier transform"

$$
\mathcal{F} \quad \text { defined by } \quad\left\{\begin{array}{l}
x \mapsto-y \\
y \mapsto x
\end{array}\right.
$$

The case $r=1$

The space $\mathcal{C}:=\bigsqcup_{n \in \mathbb{N}} \mathcal{C}_{n, 1}$ is in bijection with the moduli space of isomorphism classes of right ideals in A_{1}. Moreover, the natural action of the group Aut A_{1} on \mathcal{C} is transitive.
The group Aut A_{1} is generated by the family of automorphisms

$$
\Phi_{p} \quad \text { defined by } \quad\left\{\begin{array}{l}
x \mapsto x-p^{\prime}(y) \\
y \mapsto y
\end{array}\right.
$$

together with the "formal Fourier transform"

$$
\mathcal{F} \quad \text { defined by } \quad\left\{\begin{array}{l}
x \mapsto-y \\
y \mapsto x
\end{array}\right.
$$

These generators act on $\mathcal{C}_{n, 1}$ as follows:

$$
\Phi_{p} .(X, Y)=\left(X-p^{\prime}(Y), Y\right) \quad \mathcal{F} .(X, Y)=(-Y, X)
$$

Relationship with noncommutative geometry

It turns out that the correct way to generalize these results is to pass through noncommutative symplectic geometry (Ginzburg).

Relationship with noncommutative geometry

It turns out that the correct way to generalize these results is to pass through noncommutative symplectic geometry (Ginzburg). The group Aut A_{1} is isomorphic to the group of automorphisms of the free algebra $F_{2}:=\mathbb{C}\left\langle a, a^{*}\right\rangle$ preserving the element $\left[a, a^{*}\right]$ ("noncommutative symplectomorphisms" of F_{2}).

Relationship with noncommutative geometry

It turns out that the correct way to generalize these results is to pass through noncommutative symplectic geometry (Ginzburg). The group Aut A_{1} is isomorphic to the group of automorphisms of the free algebra $F_{2}:=\mathbb{C}\left\langle a, a^{*}\right\rangle$ preserving the element $\left[a, a^{*}\right]$ ("noncommutative symplectomorphisms" of F_{2}). Also, F_{2} is the path algebra of the quiver

and $\mathcal{C}_{n, 1}$ can be seen as a submanifold in the moduli space of linear representations of \bar{Q}_{\circ} with dimension vector (n).

Relationship with noncommutative geometry

It turns out that the correct way to generalize these results is to pass through noncommutative symplectic geometry (Ginzburg). The group Aut A_{1} is isomorphic to the group of automorphisms of the free algebra $F_{2}:=\mathbb{C}\left\langle a, a^{*}\right\rangle$ preserving the element $\left[a, a^{*}\right]$ ("noncommutative symplectomorphisms" of F_{2}). Also, F_{2} is the path algebra of the quiver

$$
\bar{Q}_{\circ}={ }_{a^{*}}^{a} \bigotimes_{1}
$$

and $\mathcal{C}_{n, 1}$ can be seen as a submanifold in the moduli space of linear representations of \bar{Q}_{\circ} with dimension vector (n).
The idea is now to find a suitable family of quivers for which the same construction works when $r>1$.

A result of Bielawski and Pidstrygach

Next simplest case: $r=2$. Taking

$$
Q_{B P}={ }^{a} \longrightarrow \bullet \stackrel{y}{\underset{x}{\longrightarrow}} \bullet
$$

we can see $\mathcal{C}_{n, 2}$ as a submanifold in $\mathcal{R}\left(\bar{Q}_{B P},(n, 1)\right)$.

A result of Bielawski and Pidstrygach

Next simplest case: $r=2$. Taking

$$
Q_{B P}={ }^{a} \longrightarrow \bullet \stackrel{y}{\underset{x}{\longleftrightarrow}} \bullet
$$

we can see $\mathcal{C}_{n, 2}$ as a submanifold in $\mathcal{R}\left(\bar{Q}_{B P},(n, 1)\right)$.
Let A denote the path algebra of $\bar{Q}_{B P}$; since $Q_{B P}$ has two vertices, A is no longer a free algebra. Denote by $\operatorname{Aut}(A ; c)$ the group of n.c. symplectomorphisms of A, i.e. the automorphisms preserving the element

$$
c=\left[a, a^{*}\right]+\left[x, x^{*}\right]+\left[y, y^{*}\right]
$$

A result of Bielawski and Pidstrygach

Next simplest case: $r=2$. Taking

$$
Q_{B P}={ }^{a} \bigcirc \bullet \stackrel{y}{\underset{x}{\longrightarrow}} \bullet
$$

we can see $\mathcal{C}_{n, 2}$ as a submanifold in $\mathcal{R}\left(\bar{Q}_{B P},(n, 1)\right)$.
Let A denote the path algebra of $\bar{Q}_{B P}$; since $Q_{B P}$ has two vertices, A is no longer a free algebra. Denote by $\operatorname{Aut}(A ; c)$ the group of n.c. symplectomorphisms of A, i.e. the automorphisms preserving the element

$$
c=\left[a, a^{*}\right]+\left[x, x^{*}\right]+\left[y, y^{*}\right]
$$

Problem: we don't really have a good description of $\operatorname{Aut}(A ; c) \ldots$

A result of Bielawski and Pidstrygach

Call an automorphism of A :

- strictly op-triangular if it fixes a^{*}, x^{*} and y^{*};

A result of Bielawski and Pidstrygach

Call an automorphism of A :

- strictly op-triangular if it fixes a^{*}, x^{*} and y^{*};
- affine if it acts as a (unimodular) affine transformation on the subspace spanned by a and a^{*}, and by

$$
\binom{-x}{y^{*}} \mapsto T\binom{-x}{y^{*}} \quad\left(\begin{array}{ll}
x^{*} & y
\end{array}\right) \mapsto\left(\begin{array}{ll}
x^{*} & y
\end{array}\right) T^{-1}
$$

$\left(T \in \mathrm{GL}_{2}(\mathbb{C})\right)$ on the subspace spanned by x, x^{*}, y and y^{*}.

A result of Bielawski and Pidstrygach

Call an automorphism of A :

- strictly op-triangular if it fixes a^{*}, x^{*} and y^{*};
- affine if it acts as a (unimodular) affine transformation on the subspace spanned by a and a^{*}, and by

$$
\binom{-x}{y^{*}} \mapsto T\binom{-x}{y^{*}} \quad\left(\begin{array}{cc}
x^{*} & y
\end{array}\right) \mapsto\left(\begin{array}{ll}
x^{*} & y
\end{array}\right) T^{-1}
$$

$\left(T \in \mathrm{GL}_{2}(\mathbb{C})\right)$ on the subspace spanned by x, x^{*}, y and y^{*}.
The group $\operatorname{TAut}(A ; c)$ of tame symplectic automorphisms of A is the subgroup of $\operatorname{Aut}(A ; c)$ generated by these two classes of automorphisms.

A result of Bielawski and Pidstrygach

Call an automorphism of A :

- strictly op-triangular if it fixes a^{*}, x^{*} and y^{*};
- affine if it acts as a (unimodular) affine transformation on the subspace spanned by a and a^{*}, and by

$$
\binom{-x}{y^{*}} \mapsto T\binom{-x}{y^{*}} \quad\left(\begin{array}{cc}
x^{*} & y
\end{array}\right) \mapsto\left(\begin{array}{ll}
x^{*} & y
\end{array}\right) T^{-1}
$$

$\left(T \in \mathrm{GL}_{2}(\mathbb{C})\right)$ on the subspace spanned by x, x^{*}, y and y^{*}.
The group $\operatorname{TAut}(A ; c)$ of tame symplectic automorphisms of A is the subgroup of $\operatorname{Aut}(A ; c)$ generated by these two classes of automorphisms.

Theorem (Bielawski, Pidstrygach 2008)
The group $\operatorname{TAut}(A ; c)$ acts transitively on $\mathcal{C}_{n, 2}$.

Gibbons-Hermsen flows

The Gibbons-Hermsen Hamiltonians on $\mathcal{C}_{n, r}$ are

$$
J_{k, \alpha}:=\operatorname{Tr} Y^{k} v \alpha w \quad\left(k \in \mathbb{N}, \alpha \in \operatorname{Mat}_{r, r}(\mathbb{C})\right)
$$

Gibbons-Hermsen flows

The Gibbons-Hermsen Hamiltonians on $\mathcal{C}_{n, r}$ are

$$
J_{k, \alpha}:=\operatorname{Tr} Y^{k} v \alpha w \quad\left(k \in \mathbb{N}, \alpha \in \operatorname{Mat}_{r, r}(\mathbb{C})\right)
$$

The flow of $J_{k, \alpha}$ is polynomial only when α is either the identity (in which case $J_{k, I} \propto \operatorname{Tr} Y^{k}$, as a consequence of the moment map equation) or nilpotent (i.e., a multiple of e_{12} or e_{21}).

Gibbons-Hermsen flows

The Gibbons-Hermsen Hamiltonians on $\mathcal{C}_{n, r}$ are

$$
J_{k, \alpha}:=\operatorname{Tr} Y^{k} v \alpha w \quad\left(k \in \mathbb{N}, \alpha \in \operatorname{Mat}_{r, r}(\mathbb{C})\right)
$$

The flow of $J_{k, \alpha}$ is polynomial only when α is either the identity (in which case $J_{k, I} \propto \operatorname{Tr} Y^{k}$, as a consequence of the moment map equation) or nilpotent (i.e., a multiple of e_{12} or e_{21}).
For example, one can calculate that the action determined by a linear combination with coefficients $\left(p_{k}\right)_{k \geq 1}$ of the flows of the Hamiltonians $J_{k, e_{21}}$ on $\mathcal{C}_{n, 2}$ coincides with the action of the strictly op-triangular automorphism

$$
(a, x, y) \mapsto\left(a-p^{\prime}\left(a^{*}\right) y^{*} x^{*}, x-p\left(a^{*}\right) y^{*}, y-x^{*} p\left(a^{*}\right)\right)
$$

Gibbons-Hermsen flows

$$
\left\{J_{k, \alpha}, J_{\ell, \beta}\right\}=J_{k+\ell,[\alpha, \beta]}
$$

Same relations that hold in the Lie algebra of polynomial loops in $\mathfrak{g l}_{r}(\mathbb{C})$ (explicitly: $J_{k, \alpha} \leftrightarrow z^{k} \alpha$). However, we cannot get a group by "integrating" this algebra ($\mathrm{e}^{p_{1}} \mathrm{e}^{p_{2}} \neq \mathrm{e}^{p_{1}+p_{2}}$).

Gibbons-Hermsen flows

$$
\left\{J_{k, \alpha}, J_{\ell, \beta}\right\}=J_{k+\ell,[\alpha, \beta]}
$$

Same relations that hold in the Lie algebra of polynomial loops in $\mathfrak{g l}_{r}(\mathbb{C})$ (explicitly: $J_{k, \alpha} \leftrightarrow z^{k} \alpha$). However, we cannot get a group by "integrating" this algebra ($\mathrm{e}^{p_{1}} \mathrm{e}^{p_{2}} \neq \mathrm{e}^{p_{1}+p_{2}}$).
Possible solution: use the group Γ of all holomorphic maps
$\mathbb{C} \rightarrow \mathrm{GL}_{r}(\mathbb{C})$. But this group is huge and contains non-polynomial flows. Instead, we would like to find a group $\Gamma^{\text {alg }} \subset \Gamma$ that can be embedded in $\operatorname{TAut}(A ; c)$.

Gibbons-Hermsen flows

$$
\left\{J_{k, \alpha}, J_{\ell, \beta}\right\}=J_{k+\ell,[\alpha, \beta]}
$$

Same relations that hold in the Lie algebra of polynomial loops in $\mathfrak{g l}_{r}(\mathbb{C})$ (explicitly: $J_{k, \alpha} \leftrightarrow z^{k} \alpha$). However, we cannot get a group by "integrating" this algebra ($\mathrm{e}^{p_{1}} \mathrm{e}^{p_{2}} \neq \mathrm{e}^{p_{1}+p_{2}}$).
Possible solution: use the group Γ of all holomorphic maps
$\mathbb{C} \rightarrow \mathrm{GL}_{r}(\mathbb{C})$. But this group is huge and contains non-polynomial flows. Instead, we would like to find a group $\Gamma^{\text {alg }} \subset \Gamma$ that can be embedded in $\operatorname{TAut}(A ; c)$.
Wilson (2009, unpublished) suggests taking

$$
\Gamma^{\text {alg }}:=\Gamma_{\mathrm{sc}}^{\mathrm{alg}} \times \mathrm{PGL}_{2}(\mathbb{C}[z])
$$

where $\Gamma_{\mathrm{sc}}^{\text {alg }}$ is the group of matrix-valued functions of the form $\mathrm{e}^{p} /$ for some $p \in z \mathbb{C}[z]$.

Our result

Denote by $\operatorname{PTAut}(A ; c)$ the quotient of $\operatorname{TAut}(A ; c)$ by the subgroup acting trivially on $\mathcal{C}_{n, 2}$.

Our result

Denote by $\operatorname{PTAut}(A ; c)$ the quotient of $\operatorname{TAut}(A ; c)$ by the subgroup acting trivially on $\mathcal{C}_{n, 2}$.
Theorem (I. Mencattini, A.T.)
There is a (nontrivial) morphism of groups

$$
i: \Gamma^{\text {alg }} \rightarrow \operatorname{PTAut}(A ; c)
$$

Denoting by \mathcal{P} the subgroup of $\operatorname{PTAut}(A ; c)$ generated by the image of i and the single symplectic automorphism

$$
\mathcal{F}\left(a, a^{*}, x, x^{*}, y, y^{*}\right):=\left(-a^{*}, a,-y^{*}, y,-x^{*}, x\right)
$$

the induced action of \mathcal{P} on $\mathcal{C}_{n, 2}$ is transitive (at least) on the open subset of $\mathcal{C}_{n, 2}$ where X or Y are regular semisimple.

Proof sketch

Theorem (Nagao)
$\mathrm{GL}_{2}(\mathbb{C}[z]) \simeq \mathrm{GL}_{2}(\mathbb{C}) *_{B_{2}(\mathbb{C})} B_{2}(\mathbb{C}[z])$ where $B_{2}(\mathbb{C}[z])$ is the subgroup of lower triangular matrices in $\mathrm{GL}_{2}(\mathbb{C}[z])$ and $B_{2}(\mathbb{C})$ is the subgroup of lower triangular matrices in $\mathrm{GL}_{2}(\mathbb{C})$.

Proof sketch

Theorem (Nagao)
$\mathrm{GL}_{2}(\mathbb{C}[z]) \simeq \mathrm{GL}_{2}(\mathbb{C}) *_{B_{2}(\mathbb{C})} B_{2}(\mathbb{C}[z])$ where $B_{2}(\mathbb{C}[z])$ is the subgroup of lower triangular matrices in $\mathrm{GL}_{2}(\mathbb{C}[z])$ and $B_{2}(\mathbb{C})$ is the subgroup of lower triangular matrices in $G L_{2}(\mathbb{C})$.

Proof sketch

We define j_{1} by sending $T \in \mathrm{GL}_{2}(\mathbb{C})$ to the affine symplectic automorphism determined by the pair (I, T), and j_{2} using the family of strictly op-triangular automorphisms described before.

Proof sketch

We define j_{1} by sending $T \in \mathrm{GL}_{2}(\mathbb{C})$ to the affine symplectic automorphism determined by the pair (I, T), and j_{2} using the family of strictly op-triangular automorphisms described before. The universal map k descends to a well-defined morphism of groups

$$
\tilde{k}: \operatorname{PGL}_{2}(\mathbb{C}[z]) \rightarrow \operatorname{PTAut}(A ; c)
$$

We extend \tilde{k} to $\Gamma^{\text {alg }}$ by defining a morphism $j_{3}: \Gamma_{\mathrm{sc}}^{\text {alg }} \rightarrow \operatorname{TAut}(A ; c)$ which sends $e^{p} /$ to the automorphism whose only nontrivial action on the generators is

$$
\begin{equation*}
a \mapsto a-p^{\prime}\left(a^{*}\right) \tag{1}
\end{equation*}
$$

Proof sketch

We define j_{1} by sending $T \in \mathrm{GL}_{2}(\mathbb{C})$ to the affine symplectic automorphism determined by the pair (I, T), and j_{2} using the family of strictly op-triangular automorphisms described before. The universal map k descends to a well-defined morphism of groups

$$
\tilde{k}: \operatorname{PGL}_{2}(\mathbb{C}[z]) \rightarrow \operatorname{PTAut}(A ; c)
$$

We extend \tilde{k} to $\Gamma^{\text {alg }}$ by defining a morphism $j_{3}: \Gamma_{\mathrm{sc}}^{\text {alg }} \rightarrow \operatorname{TAut}(A ; c)$ which sends $e^{p} /$ to the automorphism whose only nontrivial action on the generators is

$$
\begin{equation*}
a \mapsto a-p^{\prime}\left(a^{*}\right) \tag{1}
\end{equation*}
$$

Finally, i is defined by mapping $\Gamma^{\text {alg }}$ to the internal direct product of $i m j_{3}$ and $\operatorname{im} \tilde{k}$ in $\operatorname{PTAut}(A ; c)$.

Some open questions

- is i an embedding?

Some open questions

- is i an embedding?
- is the action of \mathcal{P} transitive on the whole of $\mathcal{C}_{n, 2}$?

Some open questions

- is i an embedding?
- is the action of \mathcal{P} transitive on the whole of $\mathcal{C}_{n, 2}$?
- Can we generalize B\&P's results for every $r>2$? Idea: consider the family of quivers

Some open questions

- is i an embedding?
- is the action of \mathcal{P} transitive on the whole of $\mathcal{C}_{n, 2}$?
- Can we generalize B\&P's results for every $r>2$? Idea: consider the family of quivers

- If the answer is yes, can we build a morphism $\Gamma^{\text {alg }}(r) \rightarrow \operatorname{PTAut}\left(A_{r} ; c\right)$ for every r ?

Some open questions

- is i an embedding?
- is the action of \mathcal{P} transitive on the whole of $\mathcal{C}_{n, 2}$?
- Can we generalize B\&P's results for every $r>2$? Idea: consider the family of quivers

- If the answer is yes, can we build a morphism $\Gamma^{\text {alg }}(r) \rightarrow \operatorname{PTAut}\left(A_{r} ; c\right)$ for every r ?

Ideally: obtain a (transitive?) action of $\Gamma^{\text {alg }}(r)$ on $\mathcal{C}_{n, r}$, for every $r \geq 1$.

