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Modeling populations

A classic problem in ecology: study the evolution in time of a
population of organisms of a certain species S in some (fixed)
environment.

As always, some modeling assumptions are needed.

A population corresponds naturally to a discrete variable
(number of individuals). In order to use the tools of
mathematical analysis we need to complete the state space:

N ↪→ R≥0
so that populations become real (and positive), x ∈ R≥0.

Basic parameter: (instantaneous, per-capita) growth rate

k =
ẋ

x

An evolution model for the given population is determined by
the choice of a particular function k = k(t, x).
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Malthusian growth

The easiest choice is to take k(t, x) = α, α ∈ R (constant growth,
independent from the population size). The corresponding
evolution equation is simply

ẋ = αx  x(t) = eαtx(0)

When α > 0: exponential (or Malthusian) growth, α = (log 2)/T
where T is the doubling time for species S .

α = 0.6, x(0) = 0.2

This model is not realistic. In order to reproduce, organisms need
resources; in a fixed environment resources are always bounded, so
exponential growth must stop sooner or later (usually sooner).
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Modeling a finite environment

To build a more refined model we introduce a new parameter, the
carrying capacity of the environment:

NS ∈ R≥0
It represents (a continuous approximation of) the number of
individuals of species S for which the environment can supply
enough resources in a sustainable way.

How to incorporate this parameter in an evolution model (= choice
of k(t, x))? We need a function of x whose values are:

close to α when x � N,

close to zero in a neighborhood of N,

very large and negative when x � N.
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Logistic model

The easiest choice which meets all these desiderata is a simple
linear interpolation. The corresponding evolution equation

ẋ = αx(1− x

N
)

is traditionally known as the logistic equation. It can be solved by
separation of variables, and the general solution reads

x(t) =
x(0)eαt

x(0)(eαt − 1) + 1

in units where N = 1.

α = 1.2, x(0) = 0.3 α = 1.2, x(0) = 2.2



Mathematical ecology: a primer Hamiltonian structure of the LV system A generalization

Logistic model

The easiest choice which meets all these desiderata is a simple
linear interpolation. The corresponding evolution equation
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From one to two species

Now we would like to model an environment supporting two
interacting species, 1 (“preys”) and 2 (“predators”). The state
space becomes N2 ↪→ R2

≥0. Evolution equations?

for 1, we assume an unlimited food source is available:

ẋ1 = αx1 − βx1x2
α > 0 Malthusian growth rate, β > 0 predation coefficient

for 2, we assume their only food source is 1:

ẋ2 = γx1x2 − δx2
γ > 0 growth rate per predation, δ > 0 death rate

Summing up: {
ẋ1 = x1(α− βx2)

ẋ2 = x2(γx1 − δ)

This is the (classic, 2-species) Lotka-Volterra system.
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The Lotka-Volterra system

We can simplify away some parameters by rescaling the variables:

x̃1 :=
γ

δ
x1 x̃2 :=

β

α
x2 t̃ :=

1

α
t

Then the LV equations become{
ẋ1 = x1(1− x2)

ẋ2 = kx2(x1 − 1)
(k = δ/α)

This system is notable because it is simultaneously:

simple (quadratic interactions),

interesting (solvable, non-obvious behaviors),

not completely unrealistic (used e.g. by Volterra and d’Ancona to
explain oscillations in fishery).
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The Lotka-Volterra system

Qualitative features: single equilibrium point at (1, 1), motion is
oscillatory and bounded (never intersecting the axes).
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Hamiltonian structure of the LV system

Claim

The LV equations are Hamiltonian.

Question

Where are the canonically conjugate momenta?

Answer

There are no canonically conjugate momenta.

The equations are Hamiltonian with respect to a Poisson structure
on R2

≥0 which is not symplectic.

��
��

�
��HH

HHH
HH

{
q̇ = ∂H

∂p

ṗ = −∂H
∂q

ẋ = {H, x} X
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ṗ = −∂H
∂q

��
��

�
��HH

HHH
HH

{
q̇ = ∂H

∂p
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ṗ = −∂H
∂q
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Poisson structures

Recall that a Poisson structure on a manifold M is specified by a
bivector field P ∈ Γ(M,Λ2TM) which satisfies the Jacobi identity:

P`i
∂

∂x`
P jk + P`j

∂

∂x`
Pki + P`k

∂

∂x`
P ij = 0

The corresponding Poisson brackets are then defined by

{f , g} = 〈P,df ⊗ dg〉

A vector field X ∈ Γ(M,TM) is Hamiltonian if there is a function
H ∈ Γ(M,OM) such that

X = {H, ·}

Symplectic structures are exactly the Poisson structures which are
invertible (meaning that P# : T ∗M → TM is invertible, in which
case its inverse defines a symplectic form on M).
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The LV Poisson structure

Fun fact: on a bidimensional manifold, every bivector is a Poisson
structure! (Jacobi identity = vanishing of a 3-vector. . . )

P =

(
0 P12(x1, x2)

−P12(x1, x2) 0

)

Take P12 = x1x2; then

{H, ·} = x1x2(
∂H

∂x1

∂

∂x2
− ∂H

∂x2

∂

∂x1
)

to be compared with the LV vector field

x1(1− x2)
∂

∂x1
+ kx2(x1 − 1)

∂

∂x2

The resulting gradient system for H is solved by

H(x1, x2) = k(x1 − log x1) + x2 − log x2

This is the Hamiltonian of the classic Lotka-Volterra system.
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k = 1.4
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Looking for more realistic models

The LV model reduces to a Malthusian model when predators are
absent (x2 = 0). This is quite unrealistic, so let’s try to generalize
the model by incorporating a carrying capacity for preys:{

ẋ1 = x1(α− α
N x1 − βx2)

ẋ2 = x2(γx1 − δ)

(the growth of predators is already limited by the term −δ).

We can again reduce the number of free parameters:{
ẋ1 = x1(1− x1 − x2)

ẋ2 = kx2(τx1 − 1)

where k = δ/α as before and τ = Nγ/δ is the ratio between N
and the amount of preys at equilibrium in the original model.
Question: is this model still Hamiltonian (hence integrable)?
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Integrability of 2d quadratic systems

Unfortunately, the answer is no. This follows from a result due
independently to Cairo and Feix (1992) and Plank (1995):

Theorem

Suppose that the dynamical system{
ẋ1 = x1(b1 + a11x1 + a12x2)

ẋ2 = x2(b2 + a21x1 + a22x2)

has a single equilibrium point in the (open) first quadrant. Then it
is Hamiltonian iff the following condition holds:

a11
a21

b2
b1

(
1− a22

a12

)
+

a22
a12

(
1− a11

a21

)
= 0

In our case a22 = 0, so the LHS reduces to a11b2
a21b1

= 1
τ 6= 0.
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An integrable perturbation

We would like a model which retains the Poisson structure of the
original LV model, so let us try to perturb the LV Hamiltonian

H(x1, x2) = k(x1 − log x1) + x2 − log x2

by adding a “well-chosen” term:

H ′(x1, x2) = k(τx1 − log x1) + x2 − log x2 + x1 log x2

The corresponding Hamilton equations read{
ẋ1 = x1(1− x2 − x1)

ẋ2 = kx2(τx1 − 1) + x1x2 log x2

The evolution equation for predators gains an additional term
which may be interpreted as a “correction” to their growth rate.
This term, being proportional to log x2, is positive when predators
abound (> 1) and becomes quickly very negative when their
number tends to zero.
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ẋ1 = x1(1− x2 − x1)
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Qualitative behavior

The nullclines of the system are

x1 + x2 = 1 and x2 = e
k( 1

x1
−τ)

and can intersect in 0, 1 or 2 points according to the number of
roots of the transcendental equation

kτx2 + (x2 − 1) log x2 = k(τ − 1)

Suppose τ < 1 (the carrying capacity for species 1 is lower
than their equilibrium population according to classic LV).
Then it is not hard to see that the LHS is always positive and
the RHS is always negative, hence there cannot be any
solution and the system has no equilibrium point in the
interior of the first quadrant. This means that predators
cannot survive in this scenario.
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Qualitative behavior, τ < 1

k = 1, τ = 0.5
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Qualitative behavior, τ > 1

When τ > 1 equilibrium points are possible; in the generic
case there will be two of them, dividing the phase space in
five regions. One of the two equilibria is stable, the other is a
saddle point. The predators are safe as long as the systems
does not cross the corresponding separatrix.

A
B

C

D

E
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Qualitative behavior, τ > 1

k = 1, τ = 3
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