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Geometry over an operad

An operad P is a multicategory with one object.

Each particular instance of that structure is called an algebra over the
given operad.

Observation (Kontsevich, Ginzburg–Kapranov, . . . )

Every (sufficiently nice) operad determines a kind of geometry.

The first goal of this talk is to give a (very rough) idea of how associative
geometry looks like in a special case. (Based on arXiv:1611.00644, to
appear in JGP; part II hopefully available soon.)
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Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field K.

covariant objects

Ω1(A), d : A→ Ω1(A)

Ω•(A) = TAΩ1(A)

DR•(A) =
Ω•(A)

[[Ω•(A),Ω•(A)]]

d : DRk(A)→ DRk+1(A)

contravariant objects

D1(A)

D•(A) = TAD1(A)

V•(A) =
D•(A)

[[D•(A),D•(A)]]

[Vp(A),Vq(A)]S ⊆ Vp+q−1(A)

DR1(A)× V1(A)→ A\ (A\ := A
[A,A] )

ω ∈ DR2(A) such that dω = 0,
map θ 7→ ω(θ,−) is invertible
⇒ symplectic geometry

π ∈ V2(A) such that [π, π]S = 0
⇒ Poisson geometry
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Representation spaces

For every d ∈ N we have the affine scheme of d-dim. representations

RepA
d := HomK-Alg(A,Matd ,d(K))

The group GLd(K) acts on RepA
d by conjugation:

(g .ρ)(a) := gρ(a)g−1

Moduli space of representations (to be defined carefully):

RA
d := RepA

d //GLd(K)

Associative-geometric objects on A induce GLd -invariant objects on RepA
d :

A\ → K[RepA
d ]GLd (K)

DRp(A)→ {GLd -invariant p-forms on RepAd }
Vp(A)→ {GLd -invariant p-vector fields on RepA

d }
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Quivers

A quiver is a directed multigraph.

Random example:

•a 99
b //
c

// •
d
��
•

e

cc

Each quiver Q determines an associative algebra, the path algebra KQ.
Generated as a K-vector space by paths (including the trivial ones), with
product given by concatenation of paths

ba a3 edba ca2e ad = 0 . . .

We can then apply the above machinery and do (associative) geometry
over quivers. This is in fact a particularly nice case, as quiver path
algebras are always “(formally) smooth”.
How do geometric objects on A = KQ look like?
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Fundamentals of associative geometry on KQ

A regular function f ∈ A\ is a sum of necklace
words in A, that is cycles in the quiver Q:

bca = cab = abc bcbc = cbcb . . .
•a 99

c
66 •

b
vv

For each arrow x ∈ Q add a parallel arrow dx . An
element α ∈ Ωp(A) is given by a path in this enlarged
quiver with exactly p arrows of the form dx :

bc db a2 db dc . . .

•

a

--

da

MM c
22

dc

== •
brr

db
~~

Quotienting by [A,Ωp(A)] the paths which are not closed become zero, so
that for instance we have

bc db = [bc,db] = 0 ∈ DR1(A)

ca db = a db c = db ca ∈ DR1(A)

a2 db dc = db dc a2 = −dc a2 db ∈ DR2(A)

Alberto Tacchella Integrable systems on quivers Dec 21, 2016 7 / 18



Fundamentals of associative geometry on KQ

A regular function f ∈ A\ is a sum of necklace
words in A, that is cycles in the quiver Q:

bca = cab = abc bcbc = cbcb . . .
•a 99

c
66 •

b
vv

For each arrow x ∈ Q add a parallel arrow dx . An
element α ∈ Ωp(A) is given by a path in this enlarged
quiver with exactly p arrows of the form dx :

bc db a2 db dc . . .

•

a

--

da

MM c
22

dc

== •
brr

db
~~

Quotienting by [A,Ωp(A)] the paths which are not closed become zero, so
that for instance we have

bc db = [bc,db] = 0 ∈ DR1(A)

ca db = a db c = db ca ∈ DR1(A)

a2 db dc = db dc a2 = −dc a2 db ∈ DR2(A)

Alberto Tacchella Integrable systems on quivers Dec 21, 2016 7 / 18



Fundamentals of associative geometry on KQ

A regular function f ∈ A\ is a sum of necklace
words in A, that is cycles in the quiver Q:

bca = cab = abc bcbc = cbcb . . .
•a 99

c
66 •

b
vv

For each arrow x ∈ Q add a parallel arrow dx . An
element α ∈ Ωp(A) is given by a path in this enlarged
quiver with exactly p arrows of the form dx :

bc db a2 db dc . . .

•

a

--

da

MM c
22

dc

== •
brr

db
~~

Quotienting by [A,Ωp(A)] the paths which are not closed become zero, so
that for instance we have

bc db = [bc, db] = 0 ∈ DR1(A)

ca db = a db c = db ca ∈ DR1(A)

a2 db dc = db dc a2 = −dc a2 db ∈ DR2(A)

Alberto Tacchella Integrable systems on quivers Dec 21, 2016 7 / 18



Fundamentals of associative geometry on KQ

For each arrow x ∈ Q add an opposite arrow ∂x . An
element θ ∈ Dp(A) is given by a path in this enlarged
quiver with exactly p arrows of the form ∂x :

bc∂a c∂a∂c . . .

•

a

--

∂a

MM c
22

∂b
  
•

brr

∂c

``

Again, quotienting by [A,Dp(A)] the paths which are not closed become
zero, so that for instance

bc∂a = c∂ab = ∂abc ∈ V1(A)

c∂a∂c = ∂a∂cc = −∂cc∂a ∈ V2(A)

The pairing between a 1-form α =
∑

x∈Q rx dx and a vector field
θ =

∑
x∈Q px∂x is then given by

〈α, θ〉 =
∑
x∈Q

rxpx ∈ A\
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Induced objects on representation spaces

(A,B,C ) ∈ RepA
(n,r) = Matn,n(K)⊕Matn,r (K)⊕Matr ,n(K)

First principle: Ω•(A) and D•(A) induce “matrix-valued objects”:

p = bca ∈ A p̂(A,B,C ) = BCA
α = bc db ∈ Ω1(A) α̂(A,B,C ) = BCdB
ω = a2 db dc ∈ Ω2(A) ω̂(A,B,C ) = A2dB ∧ dC

θ = bc∂a ∈ D1(A) θ̂(A,B,C ) = BC ∂
∂A

π = a∂c∂b ∈ D2(A) π̂(A,B,C ) = A ∂
∂C ∧

∂
∂B

Second principle: the passage to DR•(A) and V•(A) corresponds to
“taking traces”:

p = bca = cab = abc ∈ A\ ˆ̂p(A,B,C ) = trBCA ∈ K[RepA
d ]

α = bc db ∈ DR1(A) ˆ̂α(A,B,C ) = trBCdB ∈ Ω1(RepA
d )

ω = a2 db dc ∈ DR2(A) ˆ̂ω(A,B,C ) = trA2dB ∧ dC ∈ Ω2(RepA
d )

θ = bc∂a ∈ V1(A) ˆ̂θ(A,B,C ) = trBC ∂
∂A ∈ X

1(RepA
d )

π = a∂c∂b ∈ V2(A) ˆ̂π(A,B,C ) = trA ∂
∂C ∧

∂
∂B ∈ X

2(RepA
d )
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Dynamical systems on a quiver

A dynamical system on a manifold M is (basically) a vector field on M.
Translating in our setting, we get:

Definition

A dynamical system on a quiver Q is an element of V1(KQ) (that is, a
derivation KQ → KQ).

Every dynamical system θ on Q induces a family of GLd -invariant global
vector fields on representation spaces of A = KQ:

ˆ̂θd ∈ X 1(RepA
d )

The flows of these vector fields are obtained by solving a system of matrix
ODEs. For instance when Q is the quiver with two loops x , y the
dynamical system on A = KQ given by

θ(x , y) = (α + βyx , γy2 + δy)

(α, β, γ, δ ∈ K) has been considered by Bruschi and Calogero (2006).
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Hamiltonian systems on quivers

Things are easier if we have a symplectic or (more generally) a Poisson
structure on A, in which case each regular function H ∈ A\ automatically
determines a corresponding “Hamiltonian derivation” θH given by

iθH (ω) = −dH resp. π(dH,−)

The symplectic framework is particularly simple for two reasons:

1 we have a large class of associative symplectic manifolds obtained by
taking the double of a quiver:

•
a
--

a∗
MM c

22

b∗

!!
•

brr

c∗

aa ω = da∗da + db∗db + dc∗dc

2 we have a reduction process (Marsden-Weinstein quotient) which
often gives “good” (smooth, symplectic) results.

(Unfortunately, associative symplectic forms are somewhat rare...)
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Induced systems on representation spaces

The setup in the symplectic case is:

1 start from a quiver Q with double Q;

2 A = KQ with canonical symplectic form ω =
∑

x∈Q dx∗ dx ;

3 symplectic manifold (RepA
d ,

ˆ̂ω) with action of Gd =
∏

i∈VQ
GLdi (K);

4 momentum map µ : RepA
d → gd (g∗d ' gd);

5 symplectic quotient Mτ,d := µ−1(τ I )/Gd with reduced symplectic
form ωred;

6 necklace words (fi )i>0 ∈ A\ inducing regular functions (ˆ̂fi )i>0 on
Mτ,d (with associated Hamiltonian vector fields).

Many finite-dimensional Hamiltonian systems can be recovered in this way
(rational/trigonometric/hyperbolic CM system, rational RS system, spin
versions, external potentials, ...)
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Liouville integrability of induced systems

Liouville-integrable system: Symplectic manifold (M, ω), dimM = 2n,
(f1, . . . , fn) regular functions such that

1 df1 ∧ · · · ∧ dfn 6= 0 almost everywhere on M;
2 {fi , fj} = 0 for every i , j = 1 . . . n.

Condition 2 can be checked already at the associative level (and is usually
straightforward in that setting).

The crucial question then becomes: are

there sufficiently many fi ∈ A\ such that the induced functions ˆ̂fi are (in
involution and) independent on Mτ,d?
This is (as far as I know) open in general, but see a survey by Nekrasov
(1999) for some partial results in this direction.

Example

Hamiltonian systems obtained by symplectic reduction of T ∗g with respect
to the adjoint action of the Lie group G on g. In this case Q is the quiver
with two loops (= double of the Jordan quiver). These are generically
Liouville-integrable.
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Bihamiltonian integrability

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors π0, π1 such that [π0, π1]S = 0. (Equivalently: π0 + π1 is
Poisson, π0 + λπ1 is Poisson for every λ ∈ P1.)

A bihamiltonian vector field

π̃0(dH2) = X = π̃1(dH1)

can be used to generate a family of conserved quantities using the
Lenard-Magri recursion relations

π̃1(dHk) = π̃0(dHk+1)

The functions Hk are then in involution with respect to both Poisson
brackets.
The associative version of bihamiltonian manifolds is straightforward:
triple (A, π0, π1) with π0, π1 ∈ V2(A) double Poisson structures such that

[π0, π1]S = 0 ∈ V3(A)

(which implies [ˆ̂π0, ˆ̂π1]S = 0 on every representation space).
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PN structures

Classically the following situation is quite typical: π0 comes from a
symplectic form, π1 is obtained by means of a recursion operator
N : TM → TM whose Nijenhuis torsion vanishes:

TN(X ,Y ) := [N(X ),N(Y )]− N
(
[N(X ),Y ] + [X ,N(Y )]− N([X ,Y ])

)
Is there a similar picture in the associative setting (at least for A = KQ)?

Yes! (C. Bartocci, A.T., arXiv:1604.02012, to appear in LMP)

Definition

A linear map N : V1(A)→ V1(A) is called regular if, for every θ ∈ V1(A),
N(θ) factorizes as

A

N(θ)
$$

dN // Ω1(A)

iθ
��
A

for some derivation dN : A→ Ω1(A).
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PN structures

Definition

A Nijenhuis tensor on A is a regular map N : V1(A)→ V1(A) such that
TN = 0.

If the compatibility conditions

N ◦ π̃ = π̃ ◦ N∗ (as maps DR1(A)→ V1(A))

C(π,N) = 0 (Magri-Morosi concomitant)

are satisfied, we speak of a Poisson-Nijenhuis structure on Q.

Theorem

Let Q be a quiver and (π,N) a Poisson-Nijenhuis structure on it. Then
the bivector

πN(α, β) := π(N∗(α), β) = π(α,N∗(β))

is a double Poisson structure on A which is compatible with π.
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Infinite-dimensional representations

Up to now we have considered only representations on a finite-dimensional
space V = Kd . What if we take V to be infinite-dimensional?

The most “economic” way of doing this is to take a direct limit:

Kd ↪→ Kd+1 induces K[RepA
d+1]Gd+1 → K[RepA

d ]Gd

K[RepA
∞]G∞ := lim←−

d∈N
K[RepA

d ]Gd

Theorem (Ginzburg)

The family of maps trd : A\ → K[RepA
d ]Gd (is compatible with the

restrictions and) induces a bijection

tr∞ : A\ → prim(K[RepA
∞]G∞)

So the infinite-dimensional manifold RepA
∞ may actually be the “right”

setting for associative geometry. However, it seems to be quite difficult to
manage, even in simple cases.
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Infinite-dimensional representations

Another idea: when Q is the Jordan quiver,

RepKQ
d = Matd ,d(K) = gld(K)

Then: replace gld(K) with a Kac-Moody algebra!
These have a Lie bracket and a trace map. Also, KM algebras can be
studied from both the algebraic and the analytic side (loop spaces).

This approach can already be found in the literature, as for instance in
Nekrasov’s approach to Calogero-Moser systems:

potential real system complexified system

rational T ∗sun T ∗sln(C)

trigonometric T ∗ŝun T ∗ŝln(C)

elliptic ? T ∗ŝln(C)Σ
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