Integrable systems on quivers

Alberto Tacchella

Christmas Workshop on Quivers, Moduli Spaces and Integrable Systems
December 21, 2016

Outline of the talk

(1) Associative geometry
(2) Quiver path algebras
(3) Abstract dynamical systems on quivers

4 Integrability of the induced systems

Geometry over an operad

An operad \mathcal{P} is a multicategory with one object.

Geometry over an operad

An operad \mathcal{P} is a gadget that describes a class of algebraic structures.

Geometry over an operad

An operad \mathcal{P} is a gadget that describes a class of algebraic structures. Each particular instance of that structure is called an algebra over the given operad.

Geometry over an operad

An operad \mathcal{P} is a gadget that describes a class of algebraic structures. Each particular instance of that structure is called an algebra over the given operad.

\mathcal{P}	algebras over \mathcal{P}
Com	Comm. algebras
As	Assoc. algebras
Lie	Lie algebras
\vdots	\vdots

Geometry over an operad

An operad \mathcal{P} is a gadget that describes a class of algebraic structures. Each particular instance of that structure is called an algebra over the given operad.

\mathcal{P}	algebras over \mathcal{P}
Com	Comm. algebras
As	Assoc. algebras
Lie	Lie algebras
\vdots	\vdots

Observation (Kontsevich, Ginzburg-Kapranov, ...)
Every (sufficiently nice) operad determines a kind of geometry.

Geometry over an operad

An operad \mathcal{P} is a gadget that describes a class of algebraic structures. Each particular instance of that structure is called an algebra over the given operad.
$\mathcal{P} \quad$ algebras over $\mathcal{P} \quad$ geometry over \mathcal{P}

Com Comm. algebras (Commutative-)algebraic geometry As Assoc. algebras Associative-algebraic geometry Lie Lie algebras Lie-algebraic geometry

Observation (Kontsevich, Ginzburg-Kapranov, ...)
Every (sufficiently nice) operad determines a kind of geometry.

Geometry over an operad

An operad \mathcal{P} is a gadget that describes a class of algebraic structures. Each particular instance of that structure is called an algebra over the given operad.
$\mathcal{P} \quad$ algebras over \mathcal{P} geometry over \mathcal{P}
Com Comm. algebras (Commutative-)algebraic geometry As Assoc. algebras Associative-algebraic geometry Lie Lie algebras Lie-algebraic geometry

Observation (Kontsevich, Ginzburg-Kapranov, ...)

Every (sufficiently nice) operad determines a kind of geometry.
The first goal of this talk is to give a (very rough) idea of how associative geometry looks like in a special case. (Based on arXiv:1611.00644, to appear in JGP; part II hopefully available soon.)

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\mathcal{D}^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\mathcal{D}^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$
- $\mathcal{D}^{1}(A)$
- $\mathcal{D}^{\bullet}(A)=\boldsymbol{T}_{A} \mathcal{D}^{1}(A)$
- $\mathcal{V}^{\bullet}(A)=\frac{\mathcal{D}^{\bullet}(A)}{\llbracket \mathcal{D}^{\bullet}(A), \mathcal{D}^{\bullet}(A) \rrbracket}$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\mathcal{D}^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$
- $\mathcal{D}^{\bullet}(A)=\boldsymbol{T}_{A} \mathcal{D}^{1}(A)$
- $\mathcal{V}^{\bullet}(A)=\frac{\mathcal{D}^{\bullet}(A)}{\llbracket \mathcal{D}^{\bullet}(A), \mathcal{D}^{\bullet}(A) \rrbracket}$
- $\left[\mathcal{V}^{p}(A), \mathcal{V}^{q}(A)\right]_{S} \subseteq \mathcal{V}^{p+q-1}(A)$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.
covariant objects
contravariant objects

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\mathcal{D}^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathcal{D}^{\bullet}(A)=\boldsymbol{T}_{A} \mathcal{D}^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- $\mathcal{V}^{\bullet}(A)=\frac{\mathcal{D}^{\bullet}(A)}{\llbracket \mathcal{D}^{\bullet}(A), \mathcal{D}^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$
- $\left[\mathcal{V}^{p}(A), \mathcal{V}^{q}(A)\right]_{S} \subseteq \mathcal{V}^{p+q-1}(A)$

$$
\operatorname{DR}^{1}(A) \times \mathcal{V}^{1}(A) \rightarrow A_{\natural} \quad\left(A_{\natural}:=\frac{A}{[A, A]}\right)
$$

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\mathcal{D}^{1}(A)$
- $\Omega^{\bullet}(A)=T_{A} \Omega^{1}(A)$
- $\mathrm{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$

$$
\operatorname{DR}^{1}(A) \times \mathcal{V}^{1}(A) \rightarrow A_{\natural} \quad\left(A_{\natural}:=\frac{A}{[A, A]}\right)
$$

$\omega \in \operatorname{DR}^{2}(A)$ such that $\mathrm{d} \omega=0$, map $\theta \mapsto \omega(\theta,-)$ is invertible
\Rightarrow symplectic geometry

Geometric objects on associative algebras

Let A be a finitely generated associative algebra over a field \mathbb{K}.

- $\Omega^{1}(A), \mathrm{d}: A \rightarrow \Omega^{1}(A)$
- $\mathcal{D}^{1}(A)$
- $\Omega^{\bullet}(A)=\boldsymbol{T}_{A} \Omega^{1}(A)$
- $\mathcal{D}^{\bullet}(A)=\boldsymbol{T}_{A} \mathcal{D}^{1}(A)$
- $\operatorname{DR}^{\bullet}(A)=\frac{\Omega^{\bullet}(A)}{\llbracket \Omega^{\bullet}(A), \Omega^{\bullet}(A) \rrbracket}$
- d: $\operatorname{DR}^{k}(A) \rightarrow \operatorname{DR}^{k+1}(A)$

$$
\operatorname{DR}^{1}(A) \times \mathcal{V}^{1}(A) \rightarrow A_{\natural} \quad\left(A_{\natural}:=\frac{A}{[A, A]}\right)
$$

$\omega \in \operatorname{DR}^{2}(A)$ such that $\mathrm{d} \omega=0$, map $\theta \mapsto \omega(\theta,-)$ is invertible \Rightarrow symplectic geometry

Representation spaces

For every $d \in \mathbb{N}$ we have the affine scheme of d-dim. representations

$$
\operatorname{Rep}_{d}^{A}:=\operatorname{Hom}_{\mathbb{K}-\mathbf{A l g}}\left(A, \operatorname{Mat}_{d, d}(\mathbb{K})\right)
$$

Representation spaces

For every $d \in \mathbb{N}$ we have the affine scheme of d-dim. representations

$$
\operatorname{Rep}_{d}^{A}:=\operatorname{Hom}_{\mathbb{K}-\mathbf{A l g}}\left(A, \operatorname{Mat}_{d, d}(\mathbb{K})\right)
$$

The group $G L_{d}(\mathbb{K})$ acts on $\operatorname{Rep}_{d}^{A}$ by conjugation:

$$
(g . \rho)(a):=g \rho(a) g^{-1}
$$

Moduli space of representations (to be defined carefully ${ }^{1}$):

$$
\mathcal{R}_{d}^{A}:=\operatorname{Rep}_{d}^{A} / / \mathrm{GL}_{d}(\mathbb{K})
$$

Representation spaces

For every $d \in \mathbb{N}$ we have the affine scheme of d-dim. representations

$$
\operatorname{Rep}_{d}^{A}:=\operatorname{Hom}_{\mathbb{K}-\mathbf{A l g}}\left(A, \operatorname{Mat}_{d, d}(\mathbb{K})\right)
$$

The group $G L_{d}(\mathbb{K})$ acts on $\operatorname{Rep}_{d}^{A}$ by conjugation:

$$
(g . \rho)(a):=g \rho(a) g^{-1}
$$

Moduli space of representations (to be defined carefully ${ }^{1}$):

$$
\mathcal{R}_{d}^{A}:=\operatorname{Rep}_{d}^{A} / / \mathrm{GL}_{d}(\mathbb{K})
$$

Associative-geometric objects on A induce GL_{d}-invariant objects on $\operatorname{Rep}_{d}^{A}$:

$$
A_{\natural} \rightarrow \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]^{A_{d}} \mathrm{~K}_{d}(\mathbb{K})
$$

$\mathrm{DR}^{p}(A) \rightarrow\left\{\mathrm{GL}_{d}\right.$-invariant p-forms on $\left.\operatorname{Rep}_{d}^{A}\right\}$
$\mathcal{V}^{p}(A) \rightarrow\left\{\mathrm{GL}_{d}\right.$-invariant p-vector fields on $\left.\operatorname{Rep}_{d}^{A}\right\}$

Quivers

A quiver is a directed multigraph.

Quivers

A quiver is a bunch of vertices with arrows between them.

Quivers

A quiver is a bunch of vertices with arrows between them. Random example:

Quivers

A quiver is a bunch of vertices with arrows between them.
Random example:

Each quiver Q determines an associative algebra, the path algebra $\mathbb{K} Q$. Generated as a \mathbb{K}-vector space by paths (including the trivial ones), with product given by concatenation of paths

$$
\text { ba } \quad a^{3} \quad \text { edba } \quad c a^{2} e \quad a d=0 \quad \ldots
$$

Quivers

A quiver is a bunch of vertices with arrows between them.
Random example:

Each quiver Q determines an associative algebra, the path algebra $\mathbb{K} Q$. Generated as a \mathbb{K}-vector space by paths (including the trivial ones), with product given by concatenation of paths

$$
\text { ba } \quad a^{3} \quad \text { edba } \quad c a^{2} e \quad a d=0 \quad \ldots
$$

We can then apply the above machinery and do (associative) geometry over quivers. This is in fact a particularly nice case, as quiver path algebras are always "(formally) smooth". How do geometric objects on $A=\mathbb{K} Q$ look like?

Fundamentals of associative geometry on $\mathbb{K} Q$

A regular function $f \in A_{\natural}$ is a sum of necklace words in A, that is cycles in the quiver Q :

$$
b c a=c a b=a b c \quad b c b c=c b c b
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

A regular function $f \in A_{\natural}$ is a sum of necklace words in A, that is cycles in the quiver Q :

$$
b c a=c a b=a b c \quad b c b c=c b c b
$$

For each arrow $x \in Q$ add a parallel arrow $\mathrm{d} x$. An element $\alpha \in \Omega^{p}(A)$ is given by a path in this enlarged quiver with exactly p arrows of the form $\mathrm{d} x$:

$$
b c \mathrm{~d} b \quad a^{2} \mathrm{~d} b \mathrm{~d} c \quad \ldots
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

A regular function $f \in A_{\natural}$ is a sum of necklace words in A, that is cycles in the quiver Q :

$$
b c a=c a b=a b c \quad b c b c=c b c b
$$

For each arrow $x \in Q$ add a parallel arrow $\mathrm{d} x$. An element $\alpha \in \Omega^{p}(A)$ is given by a path in this enlarged quiver with exactly p arrows of the form $\mathrm{d} x$:

$$
b c \mathrm{~d} b \quad a^{2} \mathrm{~d} b \mathrm{~d} c \quad \ldots
$$

Quotienting by $\left[A, \Omega^{p}(A)\right]$ the paths which are not closed become zero, so that for instance we have

$$
\begin{gathered}
b c \mathrm{~d} b=[b c, \mathrm{~d} b]=0 \in \operatorname{DR}^{1}(A) \\
c a \mathrm{~d} b=a \mathrm{~d} b c=\mathrm{d} b c a \in \mathrm{DR}^{1}(A) \\
a^{2} \mathrm{~d} b \mathrm{~d} c=\mathrm{d} b \mathrm{~d} c a^{2}=-\mathrm{d} c a^{2} \mathrm{~d} b \in \operatorname{DR}^{2}(A)
\end{gathered}
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

For each arrow $x \in Q$ add an opposite arrow ∂_{x}. An element $\theta \in \mathcal{D}^{p}(A)$ is given by a path in this enlarged quiver with exactly p arrows of the form ∂_{x} :

$$
b c \partial_{a} \quad c \partial_{a} \partial_{c} \quad \ldots
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

For each arrow $x \in Q$ add an opposite arrow ∂_{x}. An element $\theta \in \mathcal{D}^{p}(A)$ is given by a path in this enlarged quiver with exactly p arrows of the form ∂_{x} :

$$
b c \partial_{a} \quad c \partial_{a} \partial_{c} \quad \ldots
$$

Again, quotienting by $\left[A, \mathcal{D}^{p}(A)\right]$ the paths which are not closed become zero, so that for instance

$$
\begin{gathered}
b c \partial_{a}=c \partial_{a} b=\partial_{a} b c \in \mathcal{V}^{1}(A) \\
c \partial_{a} \partial_{c}=\partial_{a} \partial_{c} c=-\partial_{c} c \partial_{a} \in \mathcal{V}^{2}(A)
\end{gathered}
$$

Fundamentals of associative geometry on $\mathbb{K} Q$

For each arrow $x \in Q$ add an opposite arrow ∂_{x}. An element $\theta \in \mathcal{D}^{p}(A)$ is given by a path in this enlarged quiver with exactly p arrows of the form ∂_{x} :

$$
b c \partial_{a} \quad c \partial_{a} \partial_{c} \quad \ldots
$$

Again, quotienting by $\left[A, \mathcal{D}^{p}(A)\right]$ the paths which are not closed become zero, so that for instance

$$
\begin{gathered}
b c \partial_{a}=c \partial_{a} b=\partial_{a} b c \in \mathcal{V}^{1}(A) \\
c \partial_{a} \partial_{c}=\partial_{a} \partial_{c} c=-\partial_{c} c \partial_{a} \in \mathcal{V}^{2}(A)
\end{gathered}
$$

The pairing between a 1-form $\alpha=\sum_{x \in Q} r_{x} \mathrm{~d} x$ and a vector field $\theta=\sum_{x \in Q} p_{x} \partial_{x}$ is then given by

$$
\langle\alpha, \theta\rangle=\sum_{x \in Q} r_{x} p_{x} \in A_{\natural}
$$

Induced objects on representation spaces

$$
(A, B, C) \in \operatorname{Rep}_{(n, r)}^{A}=\operatorname{Mat}_{n, n}(\mathbb{K}) \oplus \operatorname{Mat}_{n, r}(\mathbb{K}) \oplus \operatorname{Mat}_{r, n}(\mathbb{K})
$$

Induced objects on representation spaces

$$
(A, B, C) \in \operatorname{Rep}_{(n, r)}^{A}=\operatorname{Mat}_{n, n}(\mathbb{K}) \oplus \operatorname{Mat}_{n, r}(\mathbb{K}) \oplus \operatorname{Mat}_{r, n}(\mathbb{K})
$$

First principle: $\Omega^{\bullet}(A)$ and $\mathcal{D}^{\bullet}(A)$ induce "matrix-valued objects":

$$
\begin{aligned}
& p=b c a \in A \\
& \alpha=b c \mathrm{~d} b \in \Omega^{1}(A) \\
& \omega=a^{2} \mathrm{~d} b \mathrm{~d} c \in \Omega^{2}(A) \\
& \theta=b c \partial_{a} \in \mathcal{D}^{1}(A) \\
& \pi=a \partial_{c} \partial_{b} \in \mathcal{D}^{2}(A)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{p}(A, B, C)=B C A \\
& \hat{\alpha}(A, B, C)=B C \mathrm{~d} B \\
& \hat{\omega}(A, B, C)=A^{2} \mathrm{~d} B \wedge \mathrm{~d} C \\
& \hat{\theta}(A, B, C)=B C \frac{\partial}{\partial A} \\
& \hat{\pi}(A, B, C)=A \frac{\partial}{\partial C} \wedge \frac{\partial}{\partial B}
\end{aligned}
$$

Induced objects on representation spaces

$$
(A, B, C) \in \operatorname{Rep}_{(n, r)}^{A}=\operatorname{Mat}_{n, n}(\mathbb{K}) \oplus \operatorname{Mat}_{n, r}(\mathbb{K}) \oplus \operatorname{Mat}_{r, n}(\mathbb{K})
$$

First principle: $\Omega^{\bullet}(A)$ and $\mathcal{D}^{\bullet}(A)$ induce "matrix-valued objects":

$$
\begin{array}{ll}
p=b c a \in A & \hat{p}(A, B, C)=B C A \\
\alpha=b c \mathrm{~d} b \in \Omega^{1}(A) & \hat{\alpha}(A, B, C)=B C \mathrm{~d} B \\
\omega=a^{2} \mathrm{~d} b \mathrm{~d} c \in \Omega^{2}(A) & \hat{\omega}(A, B, C)=A^{2} \mathrm{~d} B \wedge \mathrm{~d} C \\
\theta=b c \partial_{a} \in \mathcal{D}^{1}(A) & \hat{\theta}(A, B, C)=B C \frac{\partial}{\partial A} \\
\pi=a \partial_{c} \partial_{b} \in \mathcal{D}^{2}(A) & \hat{\pi}(A, B, C)=A \frac{\partial}{\partial C} \wedge \frac{\partial}{\partial B}
\end{array}
$$

Second principle: the passage to $\operatorname{DR}^{\bullet}(A)$ and $\mathcal{V}^{\bullet}(A)$ corresponds to "taking traces":

$$
\begin{array}{ll}
p=b c a=c a b=a b c \in A_{\natural} & \hat{\hat{p}}(A, B, C)=\operatorname{tr} B C A \in \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right] \\
\alpha=b c \mathrm{~d} b \in \operatorname{DR}^{1}(A) & \hat{\hat{\alpha}}(A, B, C)=\operatorname{tr} B C \mathrm{~d} B \in \Omega^{1}\left(\operatorname{Rep}_{d}^{A}\right) \\
\omega=a^{2} \mathrm{~d} b \mathrm{~d} c \in \operatorname{DR}^{2}(A) & \hat{\hat{\omega}}(A, B, C)=\operatorname{tr} A^{2} \mathrm{~d} B \wedge \mathrm{~d} C \in \Omega^{2}\left(\operatorname{Rep}_{d}^{A}\right) \\
\theta=b c \partial_{a} \in \mathcal{V}^{1}(A) & \hat{\hat{\theta}}(A, B, C)=\operatorname{tr} B C \frac{\partial}{\partial A} \in \mathcal{X}^{1}\left(\operatorname{Rep}_{d}^{A}\right) \\
\pi=a \partial_{c} \partial_{b} \in \mathcal{V}^{2}(A) & \hat{\pi}(A, B, C)=\operatorname{tr} A \frac{\partial}{\partial C} \wedge \frac{\partial}{\partial B} \in \mathcal{X}^{2}\left(\operatorname{Rep}_{d}^{A}\right)
\end{array}
$$

Dynamical systems on a quiver

A dynamical system on a manifold M is (basically) a vector field on M. Translating in our setting, we get:

Definition

A dynamical system on a quiver Q is an element of $\mathcal{V}^{1}(\mathbb{K} Q)$ (that is, a derivation $\mathbb{K} Q \rightarrow \mathbb{K} Q$).

Dynamical systems on a quiver

A dynamical system on a manifold M is (basically) a vector field on M. Translating in our setting, we get:

Definition

A dynamical system on a quiver Q is an element of $\mathcal{V}^{1}(\mathbb{K} Q)$ (that is, a derivation $\mathbb{K} Q \rightarrow \mathbb{K} Q$).

Every dynamical system θ on Q induces a family of GL_{d}-invariant global vector fields on representation spaces of $A=\mathbb{K} Q$:

$$
\hat{\hat{\theta}}_{d} \in \mathcal{X}^{1}\left(\operatorname{Rep}_{d}^{A}\right)
$$

The flows of these vector fields are obtained by solving a system of matrix ODEs.

Dynamical systems on a quiver

A dynamical system on a manifold M is (basically) a vector field on M. Translating in our setting, we get:

Definition

A dynamical system on a quiver Q is an element of $\mathcal{V}^{1}(\mathbb{K} Q)$ (that is, a derivation $\mathbb{K} Q \rightarrow \mathbb{K} Q$).

Every dynamical system θ on Q induces a family of GL_{d}-invariant global vector fields on representation spaces of $A=\mathbb{K} Q$:

$$
\hat{\hat{\theta}}_{d} \in \mathcal{X}^{1}\left(\operatorname{Rep}_{d}^{A}\right)
$$

The flows of these vector fields are obtained by solving a system of matrix ODEs. For instance when Q is the quiver with two loops x, y the dynamical system on $A=\mathbb{K} Q$ given by

$$
\theta(x, y)=\left(\alpha+\beta y x, \gamma y^{2}+\delta y\right)
$$

($\alpha, \beta, \gamma, \delta \in \mathbb{K}$) has been considered by Bruschi and Calogero (2006)

Hamiltonian systems on quivers

Things are easier if we have a symplectic or (more generally) a Poisson structure on A, in which case each regular function $H \in A_{\natural}$ automatically determines a corresponding "Hamiltonian derivation" θ_{H} given by

$$
i_{\theta_{H}}(\omega)=-\mathrm{d} H \quad \text { resp. } \quad \pi(\mathrm{d} H,-)
$$

Hamiltonian systems on quivers

Things are easier if we have a symplectic or (more generally) a Poisson structure on A, in which case each regular function $H \in A_{\natural}$ automatically determines a corresponding "Hamiltonian derivation" θ_{H} given by

$$
i_{\theta_{H}}(\omega)=-\mathrm{d} H \quad \text { resp. } \quad \pi(\mathrm{d} H,-)
$$

The symplectic framework is particularly simple for two reasons:
(1) we have a large class of associative symplectic manifolds obtained by taking the double of a quiver:

$$
\omega=\mathrm{d} a^{*} \mathrm{~d} a+\mathrm{d} b^{*} \mathrm{~d} b+\mathrm{d} c^{*} \mathrm{~d} c
$$

Hamiltonian systems on quivers

Things are easier if we have a symplectic or (more generally) a Poisson structure on A, in which case each regular function $H \in A_{\natural}$ automatically determines a corresponding "Hamiltonian derivation" θ_{H} given by

$$
i_{\theta_{H}}(\omega)=-\mathrm{d} H \quad \text { resp. } \quad \pi(\mathrm{d} H,-)
$$

The symplectic framework is particularly simple for two reasons:
(1) we have a large class of associative symplectic manifolds obtained by taking the double of a quiver:

$$
\omega=\mathrm{d} a^{*} \mathrm{~d} a+\mathrm{d} b^{*} \mathrm{~d} b+\mathrm{d} c^{*} \mathrm{~d} c
$$

(2) we have a reduction process (Marsden-Weinstein quotient) which often gives "good" (smooth, symplectic) results.
(Unfortunately, associative symplectic forms are somewhat rare...)

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};
(2) $A=\mathbb{K} \bar{Q}$ with canonical symplectic form $\omega=\sum_{x \in Q} \mathrm{~d} x^{*} \mathrm{~d} x$;

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};
(2) $A=\mathbb{K} \bar{Q}$ with canonical symplectic form $\omega=\sum_{x \in Q} \mathrm{~d} x^{*} \mathrm{~d} x$;
(3) symplectic manifold $\left(\operatorname{Rep}_{d}^{A}, \hat{\hat{\omega}}\right)$ with action of $G_{d}=\prod_{i \in V_{Q}} \mathrm{GL}_{d_{i}}(\mathbb{K})$;

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};
(2) $A=\mathbb{K} \bar{Q}$ with canonical symplectic form $\omega=\sum_{x \in Q} \mathrm{~d} x^{*} \mathrm{~d} x$;
(3) symplectic manifold $\left(\operatorname{Rep}_{d}^{A}, \hat{\hat{\omega}}\right)$ with action of $G_{d}=\prod_{i \in V_{Q}} \mathrm{GL}_{d_{i}}(\mathbb{K})$;
(9) momentum map $\mu: \operatorname{Rep}_{d}^{A} \rightarrow \mathfrak{g}_{d}\left(\mathfrak{g}_{d}^{*} \simeq \mathfrak{g}_{d}\right)$;

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};
(2) $A=\mathbb{K} \bar{Q}$ with canonical symplectic form $\omega=\sum_{x \in Q} \mathrm{~d} x^{*} \mathrm{~d} x$;
(3) symplectic manifold $\left(\operatorname{Rep}_{d}^{A}, \hat{\hat{\omega}}\right)$ with action of $G_{d}=\prod_{i \in V_{Q}} \mathrm{GL}_{d_{i}}(\mathbb{K})$;
(1) momentum map $\mu: \operatorname{Rep}_{d}^{A} \rightarrow \mathfrak{g}_{d}\left(\mathfrak{g}_{d}^{*} \simeq \mathfrak{g}_{d}\right)$;
(5) symplectic quotient $\mathcal{M}_{\tau, d}:=\mu^{-1}(\tau l) / G_{d}$ with reduced symplectic form $\omega_{\text {red }}$;

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};
(2) $A=\mathbb{K} \bar{Q}$ with canonical symplectic form $\omega=\sum_{x \in Q} \mathrm{~d} x^{*} \mathrm{~d} x$;
(3) symplectic manifold $\left(\operatorname{Rep}_{d}^{A}, \hat{\hat{\omega}}\right)$ with action of $G_{d}=\prod_{i \in V_{Q}} \mathrm{GL}_{d_{i}}(\mathbb{K})$;
(9) momentum map $\mu: \operatorname{Rep}_{d}^{A} \rightarrow \mathfrak{g}_{d}\left(\mathfrak{g}_{d}^{*} \simeq \mathfrak{g}_{d}\right)$;
(5) symplectic quotient $\mathcal{M}_{\tau, d}:=\mu^{-1}(\tau l) / G_{d}$ with reduced symplectic form $\omega_{\text {red }}$;
(0) necklace words $\left(f_{i}\right)_{i>0} \in A_{\natural}$ inducing regular functions $\left(\hat{\hat{f}}_{i}\right)_{i>0}$ on $\mathcal{M}_{\tau, d}$ (with associated Hamiltonian vector fields).

Induced systems on representation spaces

The setup in the symplectic case is:
(1) start from a quiver Q with double \bar{Q};
(2) $A=\mathbb{K} \bar{Q}$ with canonical symplectic form $\omega=\sum_{x \in Q} \mathrm{~d} x^{*} \mathrm{~d} x$;
(3) symplectic manifold $\left(\operatorname{Rep}_{d}^{A}, \hat{\hat{\omega}}\right)$ with action of $G_{d}=\prod_{i \in V_{Q}} \mathrm{GL}_{d_{i}}(\mathbb{K})$;
(9) momentum map $\mu: \operatorname{Rep}_{d}^{A} \rightarrow \mathfrak{g}_{d}\left(\mathfrak{g}_{d}^{*} \simeq \mathfrak{g}_{d}\right)$;
(5) symplectic quotient $\mathcal{M}_{\tau, d}:=\mu^{-1}(\tau l) / G_{d}$ with reduced symplectic form $\omega_{\text {red }}$;
(0) necklace words $\left(f_{i}\right)_{i>0} \in A_{\natural}$ inducing regular functions $\left(\hat{\hat{f}}_{i}\right)_{i>0}$ on $\mathcal{M}_{\tau, d}$ (with associated Hamiltonian vector fields).
Many finite-dimensional Hamiltonian systems can be recovered in this way (rational/trigonometric/hyperbolic CM system, rational RS system, spin versions, external potentials, ...)

Liouville integrability of induced systems

Liouville-integrable system: Symplectic manifold $(M, \omega), \operatorname{dim} M=2 n$, (f_{1}, \ldots, f_{n}) regular functions such that
(1) $\mathrm{d} f_{1} \wedge \cdots \wedge \mathrm{~d} f_{n} \neq 0$ almost everywhere on M;
(2) $\left\{f_{i}, f_{j}\right\}=0$ for every $i, j=1 \ldots n$.

Condition 2 can be checked already at the associative level (and is usually straightforward in that setting).

Liouville integrability of induced systems

Liouville-integrable system: Symplectic manifold $(M, \omega), \operatorname{dim} M=2 n$, (f_{1}, \ldots, f_{n}) regular functions such that
(1) $\mathrm{d} f_{1} \wedge \cdots \wedge \mathrm{~d} f_{n} \neq 0$ almost everywhere on M;
(2) $\left\{f_{i}, f_{j}\right\}=0$ for every $i, j=1 \ldots n$.

Condition 2 can be checked already at the associative level (and is usually straightforward in that setting). The crucial question then becomes: are there sufficiently many $f_{i} \in A_{\natural}$ such that the induced functions $\hat{\hat{f}}_{i}$ are (in involution and) independent on $\mathcal{M}_{\tau, d}$?
This is (as far as I know) open in general, but see a survey by Nekrasov (1999) for some partial results in this direction.

Liouville integrability of induced systems

Liouville-integrable system: Symplectic manifold $(M, \omega), \operatorname{dim} M=2 n$, $\left(f_{1}, \ldots, f_{n}\right)$ regular functions such that
(1) $\mathrm{d} f_{1} \wedge \cdots \wedge \mathrm{~d} f_{n} \neq 0$ almost everywhere on M;
(2) $\left\{f_{i}, f_{j}\right\}=0$ for every $i, j=1 \ldots n$.

Condition 2 can be checked already at the associative level (and is usually straightforward in that setting). The crucial question then becomes: are there sufficiently many $f_{i} \in A_{\natural}$ such that the induced functions $\hat{\hat{f}}_{i}$ are (in involution and) independent on $\mathcal{M}_{\tau, d}$?
This is (as far as I know) open in general, but see a survey by Nekrasov (1999) for some partial results in this direction.

Example

Hamiltonian systems obtained by symplectic reduction of $T^{*} \mathfrak{g}$ with respect to the adjoint action of the Lie group G on \mathfrak{g}. In this case Q is the quiver with two loops (= double of the Jordan quiver). These are generically Liouville-integrable.

Bihamiltonian integrability

A bihamiltonian manifold is a manifold M which admits two distinct Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]_{S}=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)

Bihamiltonian integrability

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]_{S}=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)
A bihamiltonian vector field

$$
\tilde{\pi}_{0}\left(\mathrm{~d} H_{2}\right)=X=\tilde{\pi}_{1}\left(\mathrm{~d} H_{1}\right)
$$

can be used to generate a family of conserved quantities using the Lenard-Magri recursion relations

$$
\tilde{\pi}_{1}\left(\mathrm{~d} H_{k}\right)=\tilde{\pi}_{0}\left(\mathrm{~d} H_{k+1}\right)
$$

The functions H_{k} are then in involution with respect to both Poisson brackets.

Bihamiltonian integrability

A bihamiltonian manifold is a manifold M which admits two distinct
Poisson bivectors π_{0}, π_{1} such that $\left[\pi_{0}, \pi_{1}\right]_{S}=0$. (Equivalently: $\pi_{0}+\pi_{1}$ is Poisson, $\pi_{0}+\lambda \pi_{1}$ is Poisson for every $\lambda \in \mathbb{P}^{1}$.)
A bihamiltonian vector field

$$
\tilde{\pi}_{0}\left(\mathrm{~d} H_{2}\right)=X=\tilde{\pi}_{1}\left(\mathrm{~d} H_{1}\right)
$$

can be used to generate a family of conserved quantities using the Lenard-Magri recursion relations

$$
\tilde{\pi}_{1}\left(\mathrm{~d} H_{k}\right)=\tilde{\pi}_{0}\left(\mathrm{~d} H_{k+1}\right)
$$

The functions H_{k} are then in involution with respect to both Poisson brackets.
The associative version of bihamiltonian manifolds is straightforward: triple $\left(A, \pi_{0}, \pi_{1}\right)$ with $\pi_{0}, \pi_{1} \in \mathcal{V}^{2}(A)$ double Poisson structures such that

$$
\left[\pi_{0}, \pi_{1}\right]_{S}=0 \in \mathcal{V}^{3}(A)
$$

(which implies $\left[\hat{\hat{\pi}}_{0}, \hat{\pi}_{1}\right]_{S}=0$ on every representation space).

PN structures

Classically the following situation is quite typical: π_{0} comes from a symplectic form, π_{1} is obtained by means of a recursion operator $N: T M \rightarrow T M$ whose Nijenhuis torsion vanishes:

$$
\mathcal{T}_{N}(X, Y):=[N(X), N(Y)]-N([N(X), Y]+[X, N(Y)]-N([X, Y]))
$$

Is there a similar picture in the associative setting (at least for $A=\mathbb{K} Q$)?

PN structures

Classically the following situation is quite typical: π_{0} comes from a symplectic form, π_{1} is obtained by means of a recursion operator $N: T M \rightarrow T M$ whose Nijenhuis torsion vanishes:

$$
\mathcal{T}_{N}(X, Y):=[N(X), N(Y)]-N([N(X), Y]+[X, N(Y)]-N([X, Y]))
$$

Is there a similar picture in the associative setting (at least for $A=\mathbb{K} Q$)? Yes! (C. Bartocci, A.T., arXiv:1604.02012, to appear in LMP)

Definition

A linear map $N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ is called regular if, for every $\theta \in \mathcal{V}^{1}(A)$, $N(\theta)$ factorizes as

for some derivation $\mathrm{d}^{N}: A \rightarrow \Omega^{1}(A)$.

PN structures

Definition

A Nijenhuis tensor on A is a regular map $N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ such that $\mathcal{T}_{N}=0$.

If the compatibility conditions

$$
\begin{array}{ll}
N \circ \tilde{\pi}=\tilde{\pi} \circ N^{*} & \left(\text { as maps } \mathrm{DR}^{1}(A) \rightarrow \mathcal{V}^{1}(A)\right) \\
C_{(\pi, N)}=0 & (\text { Magri-Morosi concomitant })
\end{array}
$$

are satisfied, we speak of a Poisson-Nijenhuis structure on Q.

PN structures

Definition

A Nijenhuis tensor on A is a regular map $N: \mathcal{V}^{1}(A) \rightarrow \mathcal{V}^{1}(A)$ such that $\mathcal{T}_{N}=0$.

If the compatibility conditions

$$
\begin{array}{ll}
N \circ \tilde{\pi}=\tilde{\pi} \circ N^{*} & \left(\text { as maps } \mathrm{DR}^{1}(A) \rightarrow \mathcal{V}^{1}(A)\right) \\
C_{(\pi, N)}=0 & (\text { Magri-Morosi concomitant })
\end{array}
$$

are satisfied, we speak of a Poisson-Nijenhuis structure on Q.

Theorem

Let Q be a quiver and (π, N) a Poisson-Nijenhuis structure on it. Then the bivector

$$
\pi^{N}(\alpha, \beta):=\pi\left(N^{*}(\alpha), \beta\right)=\pi\left(\alpha, N^{*}(\beta)\right)
$$

is a double Poisson structure on A which is compatible with π.

Infinite-dimensional representations

Up to now we have considered only representations on a finite-dimensional space $V=\mathbb{K}^{d}$. What if we take V to be infinite-dimensional?

Infinite-dimensional representations

Up to now we have considered only representations on a finite-dimensional space $V=\mathbb{K}^{d}$. What if we take V to be infinite-dimensional?
The most "economic" way of doing this is to take a direct limit:

$$
\begin{aligned}
& \mathbb{K}^{d} \hookrightarrow \mathbb{K}^{d+1} \quad \text { induces } \quad \mathbb{K}\left[\operatorname{Rep}_{d+1}^{A}\right]^{G_{d+1}} \rightarrow \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]^{G_{d}} \\
& \mathbb{K}\left[\operatorname{Rep}_{\infty}^{A}\right]^{G_{\infty}}:={\underset{d \in \mathbb{N}}{ } \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]^{G_{d}}}^{\text {位 }}
\end{aligned}
$$

Infinite-dimensional representations

Up to now we have considered only representations on a finite-dimensional space $V=\mathbb{K}^{d}$. What if we take V to be infinite-dimensional?
The most "economic" way of doing this is to take a direct limit:

$$
\begin{gathered}
\mathbb{K}^{d} \hookrightarrow \mathbb{K}^{d+1} \quad \text { induces } \mathbb{K}\left[\operatorname{Rep}_{d+1}^{A}\right]^{G_{d+1}} \rightarrow \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]^{G_{d}} \\
\mathbb{K}\left[\operatorname{Rep}_{\infty}^{A}\right]^{G_{\infty}}:=\lim _{\lim _{d \in \mathbb{N}}} \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]^{G_{d}}
\end{gathered}
$$

Theorem (Ginzburg)

The family of maps $\operatorname{tr}_{d}: A_{\natural} \rightarrow \mathbb{K}\left[\operatorname{Rep}_{d}^{A}\right]{ }^{G_{d}}$ (is compatible with the restrictions and) induces a bijection

$$
\operatorname{tr}_{\infty}: A_{\natural} \rightarrow \operatorname{prim}\left(\mathbb{K}\left[\operatorname{Rep}_{\infty}^{A}\right]^{G_{\infty}}\right)
$$

So the infinite-dimensional manifold $\operatorname{Rep}_{\infty}^{A}$ may actually be the "right" setting for associative geometry. However, it seems to be quite difficult to manage, even in simple cases.

Infinite-dimensional representations

Another idea: when Q is the Jordan quiver,

$$
\operatorname{Rep}_{d}^{\mathbb{K} Q}=\operatorname{Mat}_{d, d}(\mathbb{K})=\mathfrak{g l}_{d}(\mathbb{K})
$$

Then: replace $\mathfrak{g l}_{d}(\mathbb{K})$ with a Kac-Moody algebra!
These have a Lie bracket and a trace map. Also, KM algebras can be studied from both the algebraic and the analytic side (loop spaces).

Infinite-dimensional representations

Another idea: when Q is the Jordan quiver,

$$
\operatorname{Rep}_{d}^{\mathbb{K} Q}=\operatorname{Mat}_{d, d}(\mathbb{K})=\mathfrak{g l}_{d}(\mathbb{K})
$$

Then: replace $\mathfrak{g l}_{d}(\mathbb{K})$ with a Kac-Moody algebra!
These have a Lie bracket and a trace map. Also, KM algebras can be studied from both the algebraic and the analytic side (loop spaces). This approach can already be found in the literature, as for instance in Nekrasov's approach to Calogero-Moser systems:

potential	real system	complexified system
rational	$T^{*} \mathfrak{s u}_{n}$	$T^{*} \mathfrak{s l}_{n}(\mathbb{C})$
trigonometric	$T^{*} \widehat{\mathfrak{s u}}_{n}$	$T^{*} \widehat{\mathfrak{s l}}_{n}(\mathbb{C})$
elliptic	$?$	$T^{*} \widehat{\mathfrak{s}}_{n}(\mathbb{C})^{\Sigma}$

