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General idea

Natural (?) extension of the dualities between geometry & algebra
we all know and love:

Spc
O // Algop

Spec
oo

to the case where Alg is a category of non-commutative algebras.

Problem: there is a huge variety of associative algebras. . . many
approaches are possible.

Generalize Gelfand duality to not-necessarily-commutative
C*-algebras (Connes);

Concentrate on algebras where the failure of commutativity is
somewhat “under control” (e.g. graded-commutative, UEA of
Lie algebras, rings of differential operators);

Develop a theory that works for generic associative algebras
(e.g. free ones) ⇒ associative geometry.
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A guiding principle: the “Kontsevich philosophy”

Let A be a finitely generated associative algebra over a field K. For
every d ∈ N we have the affine scheme

RepA
d := HomK-Alg(A,Matd ,d(K))

and we know how to do geometry on a scheme. (Don’t we?)

The group GLd(K) acts on RepA
d by conjugation:

(g .ρ)(a) := gρ(a)g−1

The orbits of this action are isomorphism classes of representations.
Kontsevich philosophy: each scheme in the sequence (RepA

d )d∈N
gives an increasingly better “approximation” to the (mysterious)
geometry associated to A.
Baby version: associative-geometric objects act like “blueprints”
for an infinite sequence of (commutative-)geometric objects.
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Smoothness in associative geometry

There is a notion of formal smoothness for (finitely generated)
associative algebras; it is defined as a lifting property with respect
to quotients by nilpotent ideals. Formal smoothness guarantees
that the scheme RepA

d is smooth for every d ∈ N.

Which associative algebras are formally smooth?

1 Matn,n(K);

2 K[X ] for a smooth affine curve X ;

3 K〈x1, . . . , xn〉;
4 KQ, the path algebra of a quiver Q.

Case 1 turns out to be trivial (Morita-equivalent to K). Case 2 is
almost trivial (there is not enough “room” for noncommutativity
to kick in). Case 3 is a specialization of case 4 (loop quivers).
Hence for us A will usually be the path algebra of a quiver Q.
Also, K = C.
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Regular functions

Transposing the evaluation map RepAd ×A→ Matd ,d(C) we can
build a map

RepA
d → Matd ,d(C) → C

ρ 7→ ρ(a) 7→ tr ρ(a)

For each a ∈ A this defines a regular function â ∈ C[RepA
d ] which is

automatically GLd(C)-invariant. Also, the map a 7→ â vanishes on
the linear subspace [A,A] ⊂ A spanned by elements of the form
ab − ba for some a, b ∈ A, hence it induces a map

A

[A,A]
→ C[RepA

d ]GLd (C)

Thus we can interpret A/[A,A] as the (linear!) space of regular
functions on the associative space determined by A.
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d ] which is

automatically GLd(C)-invariant.

Also, the map a 7→ â vanishes on
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Vector fields, differential forms

Every derivation θ : A→ A induces a GLd(C)-invariant vector field
θ̂ on RepA

d . When A = C〈x1, . . . , xn〉 and θ is defined by
xi 7→ fi (x1, . . . , xn), the corresponding vector field on RepA

d is

θ̂(X1,...,Xn) = (f1(X1, . . . ,Xn), . . . , fn(X1, . . . ,Xn))

Kähler differentials: A-bimodule Ω1(A) ' A⊗ Ā (where Ā := A/C)
equipped with a derivation d : A→ Ω1(A) defined by a 7→ 1⊗ ā.
For example when A is free an element like α = f ⊗ x̄1 ∈ Ω1(A)
corresponds to the differential form on RepA

d

α̂(X1,...,Xn) = tr f (X1, . . . ,Xn)dX1

The map α 7→ α̂ vanishes on the linear subspace [A,Ω1(A)], so it
makes sense to consider instead

DR1(A) =
Ω1(A)

[A,Ω1(A)]

as the linear space of differential forms on A.
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equipped with a derivation d : A→ Ω1(A) defined by a 7→ 1⊗ ā.
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p-forms

One can extend in a universal way the pair (Ω1(A),d) to a
dg-algebra (Ω•(A),d). Concretely, Ωn(A) ' A⊗ Ā⊗ · · · ⊗ Ā so
that an element ω ∈ Ωn(A) can be written as a0 ⊗ ā1 ⊗ · · · ⊗ ān.

Let us define the Karoubi de Rham complex as

DR•(A) :=
Ω•(A)

[Ω•(A),Ω•(A)]

where [a, b] = ab − (−1)|a||b|ba is the graded commutator.
Associative p-forms live in DR•(A) and induce p-forms on RepA

d .
In the free case, if we take for instance ω = f ⊗ x̄2 ⊗ x̄1 ∈ Ω2(A)
then [ω] ∈ DR2(A) corresponds to

ω̂(X1,...,Xn) = tr(f (X1, . . . ,Xn)dX2 ∧ dX1)

In fact we can define a whole Cartan calculus on DR•(A), that is a
degree −1 “interior product” iθ and a degree 0 “Lie derivative” Lθ
such that Lθ = [d, iθ]. This makes it possible to develop a
symplectic geometry for associative spaces.
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p-vectors

Suppose A = CQ. Let Q be the double of Q, obtained by adding
for each arrow x in Q an arrow ∂x going in the opposite direction.
We grade the path algebra CQ by the number of ∂-arrows and
define

V•(A) :=
CQ

[CQ,CQ]

where again [ξ, η] = ξη − (−1)|ξ||η|ηξ.

Associative p-vectors live in V•(A) and induce p-vectors on RepA
d .

For instance a path ξ = f ∂x2g∂x1 in CQ corresponds to

ξ̂(X1,...,Xn) = tr(f (X1, . . . ,Xn)
∂

∂X2
∧ g(X1, . . . ,Xn)

∂

∂X1
)

We can also define a Schouten bracket

[Vp(A),Vq(A)] ⊆ Vp+q−1(A)

corresponding to the usual one on RepA
d . This makes it possible to

develop a Poisson geometry for associative spaces.
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An example: the associative plane

Let us consider A = C〈x , y〉, the “associative affine plane”.
RepA

d = Matd ,d(C)⊕Matd ,d(C); its coordinate algebra is a
polynomial ring in the 2d2 indeterminates Xij ,Yij (i , j = 1 . . . d).

Regular functions on A are necklace words in the letters x and y

xy = yx  ϕ(X ,Y ) = trXY xyxy  ϕ(X ,Y ) = trXYXY

Vector fields on A are derivations θ : A→ A; if θ(x , y) = (f1, f2)
then θ  θ̂(X ,Y ) = (f1(X ,Y ), f2(X ,Y ))

Differential forms α ∈ DR1(A) can be written as g1dx + g2dy for
some g1, g2 ∈ A, corresponding to

α̂(X ,Y )(U,V ) = tr(g1(X ,Y )U + g2(X ,Y )V )

One also has bivectors like π = h1∂x∂x + h2∂xh3∂y ∈ V2(A) (not
the most general one!), which corresponds to

π̂(X ,Y )((A1,B1), (A2,B2)) = tr(h1A1A2−A1h1A2+h2A1h3B2−h3B1h2A2)

and so on...
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Symplectic and Poisson geometry on the associative plane

We would like to do Hamiltonian mechanics on A. Natural starting
point is to take ω = dy dx ∈ DR2(A), which gives

ω̂(X ,Y )((U1,V1), (U2,V2)) = tr(V1U2 − U1V2)

canonical symplectic structures on each RepA
d ' T ∗Matd ,d(C).

Linear Poisson bivectors on A are in 1-1 correspondence with
associative algebra structures on C2. There are exactly 6 of them:

x∂x∂x Lie-Poisson on X ⊕ zero bracket onY
x∂x∂x + y∂y∂y Lie-Poisson on X ⊕ Lie-Poisson on Y
y∂x∂x ?
x∂x∂x + y∂x∂y gld(C) n Matd ,d(C) by left mult.
x∂x∂x + y∂y∂x gld(C) n Matd ,d(C) by right mult.
x∂x∂x + y∂x∂y + y∂y∂x gld(C) n Matd ,d(C) by conjugation

(This correspondence holds in general, e.g. for associative 3d space
one has 21 distinct structures + a single P1-indexed family.)
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Symplectic and Poisson geometry on the associative plane

Quadratic Poisson structures on C〈x1, . . . , xn〉 have been classified
(Odesskii, Rubtsov, Sokolov 2012). They are controlled by two

tensors rγδαβ and aγδαβ (with indices running on 1 . . . n) satisfying a
set of relations (when a = 0: associative YB equation for r).

For n = 2 there are 7 quadratic Poisson structures:

y∂yx∂y (a = 0)
y∂yx∂y + x2∂y∂x + yx∂y∂y
y∂yx∂y + x2∂x∂y + xy∂y∂y
y∂yy∂x (a = 0)
y∂yy∂x + y2∂x∂y + xy∂x∂x
y∂yy∂x − y2∂y∂x − yx∂x∂x
x2∂y∂y (r = 0)

Of course there are also Poisson bivectors of higher degrees (e.g.
x∂xx

2∂x , x∂xx
2∂x + x∂xxy∂y , . . . ).
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Applications: Calogero-Moser systems

Work in the “associative symplectic manifold” (A, ω), ω = dy dx .
Free motion on A is described by H = 1

2y
2. Hamilton equations

are ẋ = y , ẏ = 0. Their general solution is

x(t) = y0t + x0 (x0, y0 ∈ A)

This flow is not terribly interesting on RepAd = T ∗Matd ,d(C), but
we can perform a symplectic quotient using the GLd(C)-action:

µ : RepA
d → gld(C) µ(X ,Y ) = [X ,Y ]

Let O1 := adjoint orbit of minimal dimension in gld(C). Then

Cd := µ−1(O1)/GLd(C)

is a smooth symplectic manifold of dimension 2d . The open dense
subset where X is diagonalizable is symplectomorphic to T ∗C(d)

and the above flow corresponds to the flow determined by

H =
1

2

∑
i

p2
i +

1

2

∑
i 6=j

(qi − qj)
−2
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Applications: Calogero-Moser systems

Still working on (A, ω), let us consider the “harmonic oscillator”
H = 1

2 (y2 + ω2x2). Hamilton equations are ẋ = y , ẏ = −ω2x .
Their general solution is

x(t) = x0 cos(ωt) +
y0

ω
sin(ωt)

We descend again to the symplectic quotient Cd (defined as
before). On the dense open subset where X is diagonalizable the
above flow corresponds to the flow determined by

H =
1

2

∑
i

p2
i +

1

2

∑
i 6=j

(
(qi − qj)

−2 + ω2(qi − qj)
2
)

One can also consider bigger adjoint orbits in gld(C) (with some
complications) ⇒ Calogero-Moser systems with “spin”

H =
1

2

∑
i

p2
i +

1

2

∑
i 6=j

λ2
ij

(qi − qj)2
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Applications: Calogero-Moser systems

Consider now the “associative Poisson manifold” (A, π) where
π = y∂y∂y + x∂y∂x . On the open subset of RepA

d where X is
invertible the Poisson bivector π̂ is non degenerate. The
corresponding symplectic form reads

ω(X ,Y ) = tr(dY ∧ X−1dX − YX−1dX ∧ X−1dX )

This is the canonical symplectic form on T ∗ GLd(C) if we identify
this (trivial) bundle with U := GLd(C)×Matd ,d(C) ⊂ RepA

d by
means of left translations.
We again perform a symplectic quotient with respect to the
GLd(C)-action, but this time with momentum map

µ : U → gld(C) µ(X ,Y ) = XYX−1 − Y

We obtain another smooth symplectic manifold of dimension 2d

Ctrd := µ−1(O1)/GLd(C)
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Applications: Calogero-Moser systems

Let us take again H = 1
2y

2, with solution x(t) = y0t + x0. The
projection of this flow on the open dense subset of Ctrd where X is
diagonalizable corresponds to the flow determined by

H =
1

2

∑
i

p2
i +

1

2

∑
i 6=j

(sin(qi − qj))−2 (and/or sinh)

Many other systems may be amenable to such a treatment:

Gibbons-Hermsen

CM systems associated to root systems of Lie algebras 6= An

non-periodic Toda lattice

every other classical integrable system mentioned in
Perelomov’s book
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(sin(qi − qj))−2 (and/or sinh)

Many other systems may be amenable to such a treatment:

Gibbons-Hermsen

CM systems associated to root systems of Lie algebras 6= An

non-periodic Toda lattice

every other classical integrable system mentioned in
Perelomov’s book
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Thank you very much for your attention and...

Happy birthday Ugo!
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