
Correct-by-construction execution and
compilation of Behavior Trees

Alberto Tacchella

FBK, Trento
May 3, 2019



The long and winding road

My background: mathematical physics, geometry

. . . type theory, logic, functional programming



The CARVE project

I Collaboration between IIT, Unige, UTRC

I Part of the RobMoSys EU project

Main goals:

I to introduce a formalism for modeling composable and
reusable robotic behaviors (= routines);

I to develop a set of verification tools for increasing confidence
in the correct execution of those behaviors.

Key tool: Behavior Trees (BTs) as a hierarchical abstraction for
modeling component execution.



Behavior Trees

BTs are a graphical model that can be used to specify how an
autonomous agent switches between different tasks.

Compared to FSMs, they emphasize:

I modularity (intrinsically recursive),

I reactiveness (no closed-world assumptions).

Problem: no formal semantics for them.



The Coq theorem prover

I Developed at INRIA, France starting in 1984 (Gérard Huet,
Thierry Coquand)

I Officially billed as an interactive theorem prover or proof
assistant

I Some limited forms of automation (more can be implemented
using tactics)

I Formally based on a version of Martin-Löf’s dependent type
theory called the calculus of inductive constructions or CoC

I Via the Curry-Howard correspondence, CoC terms can be
translated into purely functional programs. This is exploited
by Coq’s program extraction mechanism, which targets
“regular” programming languages such as OCaml, Scheme
and Haskell.



Semantics for BTs via shallow embedding into CoC

Our idea: specify an operational semantics for Behavior Trees by
embedding the “language of BTs” into CoC.

Detailed plan:

I define a data type of behavior trees, parametric on a set of
basic skills;

I write a function tick realizing the (informally specified)
operational semantics of BTs:

I use program extraction to get a working interpreter for BTs.

Optionally: use Coq to prove properties about the generated
interpreter (e.g. always terminates).



BT embedding, binary implementation





BT embedding, arbitrary-branching implementation





Program extraction to OCaml

∼ 350 lines of generated (= trusted) ML code for the final version
(vs. ∼ 200 lines written by hand – the vast majority for opening &
parsing the XML input file)



Alternative semantics in terms of FSMs

UTRC developed another semantics for BTs by defining a
translation to Hierarchical Finite State Machines (see CARVE
deliverable D3.2).
This is also useful for verification purposes, both offline (model
checking) and online (monitoring).

I How to reconcile the UTRC semantics with the one used for
the interpeter?

Model-checking toolchain chosen: NuSMV+OCRA.

Problem: no way to interface directly Coq with NuSMV. In order
to be able to formally manipulate SMV specifications, we decided
to embed into Coq a restricted subset of the SMV language.



MicroSMV

Highly simplified version of SMV featuring only two basic types
(booleans and symbolic enums), a reduced set of expressions,
DEFINE macros, ASSIGN constraints and parametric modules.



Specification extractor

BT
UTRC translation //

mkspec
++

HFSM

SMV module

specifies

OO

We implemented an automated tool (mkspec) to translate a BT
into a MicroSMV module specifying the corresponding HFSM, as
described in the UTRC semantics (see the D5.1 document, Section
3 for the details).

This tool is also (mainly) obtained by program extraction starting
from Coq sources (∼ 1400 lines of generated code).



Relationship between the two semantics

Ideally, one would like to prove that the two semantics are
equivalent. A possible way do to this is:

I define inside Coq a notion of execution for HFSMs specified in
the MicroSMV language, and

I prove that for any term t : btree and for any input i one has
exec (translate t) i = tick t i .

Practical problem: the needed proof is nontrivial and requires a
good amount of Coq expertise & automation.
Principle problem: even if we had such a proof, the actual model
checking step is performed by NuSMV, whose code is totally
unrelated to the above-defined notion of execution.

The only way to reconcile the two semantics in a fully formal way
would be to develop a (formally verified) model checker in Coq and
use that model checker to perform the validation step. (Of course,
this route has problems of its own.)


