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Symplectic geometry in one slide

Basic ingredients:

I a (smooth) variety M of even dimension;

I a closed, non-degenerate 2-form ω on M.

Some consequences:

I isomorphism ω̃ : X (M)→ Ω1(M) defined by X 7→ iX (ω);

I map X : Ω0(M)→ X (M) defined by f 7→ ω̃−1(df )

I ...which gives a symplectic vector field (i.e. LXf
(ω) = 0);

I chain of inclusions: X (M) ⊇ Xsymp(M) ⊇ XHam(M)

I ...corresponding to Ω1(M) ⊇ Ω1
closed(M) ⊇ Ω1

exact(M);

I Poisson brackets, defined e.g. by {f , g} := ω(Xf ,Xg );

I an exact sequence of Lie algebras
0→ H0

dR(M)→ Ω0(M)→ Xsymp(M)→ H1
dR(M)→ 0.
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Non-commutative geometry (à la Ginzburg)

Founding principle of non-commutative geometry: generalize the
well-known dualities of the form

Spc
O // Algop

Spec
oo

to the case where Alg is some category of non-commutative
algebras.

Ginzburg’s approach: for A any associative algebra,

I take the familiar notions of (commutative) algebraic geometry
and replace A-modules with A-bimodules;

I do not focus on particular constructions (which are not going
to work anymore), but on universal properties;

I might get something different even when A is commutative!
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Some constructions that generalize

I Vector fields as A-bimodule derivations A→ A;

I Kähler differentials as a universal element (Ω1
nc, d) for the

functor Der(A,−) : A-Bimod→ Set;

I Noncommutative forms Ω•nc(A) as elements of the tensor
algebra of the A-bimodule Ω1

nc(A);

I Cartan calculus: a degree −1 “interior product” iθ and a
degree 0 “Lie derivative” Lθ satisfying

Lθ = [d, iθ]

[Lθ,Lη] = L[θ,η]
[Lθ, iγ ] = i[θ,γ]
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The complex of non-commutative differential forms

Hence we have a complex (Ω•nc(A),d). However

Hk(Ω•nc(A)) =

{
K if k = 0

0 otherwise

More interesting is the Karoubi-de Rham complex, defined by

DR•(A) :=
Ω•nc(A)

[Ω•nc(A),Ω•nc(A)]

as a quotient of graded vector spaces, with

[a, b] = ab − (−1)deg a deg bba

d, i , L all descend on DR•(A).

DR0(A) =
A

[A,A]
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Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form ω ∈ DR2(A).

I isomorphism ω̃ : Der(A)→ DR1(A) defined by θ 7→ iθ(ω);

I symplectic derivations (Lθ(ω) = 0) forming a Lie subalgebra
Derω(A) ⊆ Der(A);

I map θ : DR0(A)→ Derω(A) given by f 7→ ω̃−1(df )
(“Hamiltonian derivation” associated to f );

I θ is symplectic iff iθ(ω) is closed in DR1(A), hamiltonian iff
iθ(ω) is exact in DR1(A);

I Poisson brackets {f , g} := iθf iθg (ω) that make DR0(A) a Lie
algebra;

I the map θ fits into an exact sequence of Lie algebras 0→
H0(DR•(A))→ DR0(A)→ Derω(A)→ H1(DR•(A))→ 0.
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Quivers by example

A quiver is just a directed graph with no constraints on loops and
multiple arcs.

•.. // •

A representation of a quiver is given by the choice of a (f.d.)
vector space for each vertex and a linear map for each arrow.

Rep(Q, (d1, d2)) = Matd1,d1(C)⊕Matd1,d2(C)

On Rep(Q, ~d) there is the action of an algebraic group G~d by
“change of basis”.

G(d1,d2) = (GLd1(C)× GLd2(C))/C∗

The corresponding quotient,

R(Q, ~d) = Rep(Q, ~d)/G~d

is the moduli space of representations of Q with dim. vector ~d .
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Group actions

Where does symplectic geometry enter the picture?

To each quiver Q we can associate its double Q, by adding to each
arrow a in Q an arrow a∗ that goes in the opposite direction.

•.. <<
// •oo

Its representation space can be seen as a cotangent bundle:

Rep(Q, ~d) = T ∗Rep(Q, ~d)

thus it is equipped with a canonical symplectic form. Moreover,
the action of G~d on Rep(Q, ~d) is just the lift of its action on the
base, hence it is Hamiltonian and has a moment map

µ : Rep(Q, ~d)→ g~d

By judiciously chosing a point in g~d , we can obtain some
interesting (smooth, symplectic) varieties via Marsden-Weinstein
reduction.
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Group actions

Where does n.c. symplectic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally
associated with Q, its path algebra CQ. It is defined as the
C-vector space having as basis the set of paths in Q, with product
given by composition of paths (or 0 if the paths do not compose).

•1
a

--

a∗
::

x // •2
x∗
oo

CQ = A11 ⊕ A12 ⊕ A21 ⊕ A22

A11 ' C〈a, a∗, x∗x〉,
etc.

The equivalence class in DR2(CQ) of the 2-form

ωnc :=
∑
a∈Q

da da∗

endows CQ with a non-commutative symplectic structure.
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Group actions

Gibbons-Hermsen varieties

Take r , n ∈ N and

Vn,r = Matn,n(C)⊕Matn,n(C)⊕Matn,r (C)⊕Matr ,n(C)

= T ∗(Matn,n(C)⊕Matn,r (C))

We consider the action of GLn(C) on Vn,r given by

G .(X ,Y , v ,w) = (GXG−1,GYG−1,Gv ,wG−1)

Hamiltonian action with moment map Vn,r → gln(C)

µ(X ,Y , v ,w) = [X ,Y ] + vw

For every τ ∈ C∗ the action of GLn(C) on µ−1(τ I ) is free, so by
Marsden-Weinstein we have a smooth symplectic manifold of
dimension 2nr

Cn,r = µ−1(τ I )/GLn(C)
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Group actions

The r = 1 case

G(n,1) = (GLn(C)× GL1(C))/C∗ ' GLn(C)

It turns out that in this case we can use a simpler quiver

Q◦ = •
a

..

a∗
<< CQ◦ = C〈a, a∗〉

Then DR0(CQ◦) is the vector space of necklace words in a and a∗,
with bracket given by

{f , g} =
∂f

∂a

∂g

∂a∗
− ∂f

∂a∗
∂g

∂a
mod [CQ◦,CQ◦]

Theorem (Ginzburg 2000)

Each symplectic variety Cn,1 can be embedded as a coadjoint orbit
in the Lie algebra DR0(CQ◦).
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Group actions

Calogero-Moser correspondence

Theorem (Berest, Wilson 1999)

The space C :=
⊔

n∈N Cn,1 parametrizes isomorphism classes of
right ideals in the first Weyl algebra over C

A1 = C〈a, a∗〉/(aa∗ − a∗a− 1)

Moreover, the natural action of the group Aut A1 on each of the
Cn,1 is transitive.

This was proved by BW in a very roundabout way. But:

Aut A1 ' Aut(CQ◦; [a, a∗])

the group of symplectic automorphisms of CQ◦ (i.e., algebra
automorphisms of CQ◦ preserving [a, a∗]).
So from this perspective it is a natural result after all.
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Group actions

A result of Bielawski and Pidstrygach

Next simplest case: r = 2. Taking

QBP = •
a

..
y // •
x
oo

we can embed Vn,2 into Rep(QBP , (n, 1)).

Theorem (Bielawski, Pidstrygach 2008)

The group TAut(CQBP ; c) of (tame) symplectic automorphisms of
CQBP acts transitively on Cn,2.

Here c = [a, a∗] + [x , x∗] + [y , y∗].
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Group actions

Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezov that⊔
n∈N Cn,r parametrizes isomorphism classes of a certain class of

right sub-A1-modules in B r
1 .

Conjecture (G. Wilson): on Cn,r there is a transitive action of

Γalg
sc × PGLr (C[z ])

(where Γalg
sc is a group of maps of the form epIr for some

polynomial p ∈ zC[z ]).

Theorem (A.T., I. Mencattini)

When r = 2 there is a morphism of groups

i : Γalg → PTAut(CQBP ; c)

and the induced action on Cn,2 is transitive (at least) on a dense
open subset.
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