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Non-commutative symplectic geometry

Symplectic geometry in one slide

Basic ingredients:
» a (smooth) variety M of even dimension;

» a closed, non-degenerate 2-form w on M.
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Symplectic geometry in one slide

Basic ingredients:
» a (smooth) variety M of even dimension;
» a closed, non-degenerate 2-form w on M.
Some consequences:
» isomorphism &: X (M) — QY(M) defined by X — ix(w);
» map X: Q%(M) — X (M) defined by f — &~1(df)
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Non-commutative symplectic geometry

Symplectic geometry in one slide

Basic ingredients:
» a (smooth) variety M of even dimension;
» a closed, non-degenerate 2-form w on M.
Some consequences:
» isomorphism &: X (M) — QY(M) defined by X — ix(w);
» map X: Q%(M) — X (M) defined by f — &~1(df)

> ...which gives a symplectic vector field (i.e. Lx,(w) = 0);
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Non-commutative symplectic geometry

Symplectic geometry in one slide

Basic ingredients:
» a (smooth) variety M of even dimension;
» a closed, non-degenerate 2-form w on M.

Some consequences:
» isomorphism &: X (M) — QY(M) defined by X — ix(w);
» map X: Q%(M) — X (M) defined by f — &~1(df)
> ...which gives a symplectic vector field (i.e. Lx,(w) = 0);
» chain of inclusions: X (M) 2 Xsymp(M) 2 Xtam(M)
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Non-commutative symplectic geometry

Symplectic geometry in one slide

Basic ingredients:
» a (smooth) variety M of even dimension;
» a closed, non-degenerate 2-form w on M.
Some consequences:
» isomorphism &: X (M) — QY(M) defined by X — ix(w);
» map X: Q%(M) — X (M) defined by f — &~1(df)
> ...which gives a symplectic vector field (i.e. Lx,(w) = 0);
» chain of inclusions: X (M) 2 Xsymp(M) 2 Xtam(M)
» ...corresponding to QY(M) 2 QL (M) D QL. ..(M);

closed exact
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Non-commutative symplectic geometry

Symplectic geometry in one slide

Basic ingredients:

» a (smooth) variety M of even dimension;

» a closed, non-degenerate 2-form w on M.
Some consequences:

» isomorphism &: X (M) — QY(M) defined by X — ix(w);
map X: Q%(M) — X (M) defined by f + &~1(df)
...which gives a symplectic vector field (i.e. Lx,(w) = 0);
chain of inclusions: X (M) D Xsymp(M) O Xyam(M)

» ...corresponding to QY(M) 2 QL (M) D QL (M);

Poisson brackets, defined e.g. by {f, g} = w(Xf, Xg);

v

v
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Non-commutative symplectic geometry

Symplectic geometry in one slide

Basic ingredients:
» a (smooth) variety M of even dimension;
» a closed, non-degenerate 2-form w on M.
Some consequences:
» isomorphism &: X (M) — QY(M) defined by X — ix(w);
» map X: Q%(M) — X (M) defined by f — &~1(df)
> ...which gives a symplectic vector field (i.e. Lx,(w) = 0);
» chain of inclusions: X (M) 2 Xsymp(M) 2 Xtam(M)
» ...corresponding to QY(M) 2 QL (M) D QL (M);
» Poisson brackets, defined e.g. by {f,g} := w(X¢, Xg);

> an exact sequence of Lie algebras
0 — H3R(M) = QM) — Xyymp(M) — HIz(M) — 0.
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Non-commutative symplectic geometry

Non-commutative geometry (a la Ginzburg)

Founding principle of non-commutative geometry: generalize the
well-known dualities of the form

@
Spc —= Alg®®
Spec

to the case where Alg is some category of non-commutative
algebras.
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Non-commutative geometry (a la Ginzburg)

Founding principle of non-commutative geometry: generalize the
well-known dualities of the form

O
Spc —= Alg®®
Spec
to the case where Alg is some category of non-commutative
algebras.
Ginzburg's approach: for A any associative algebra,

» take the familiar notions of (commutative) algebraic geometry
and replace A-modules with A-bimodules;
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Non-commutative symplectic geometry

Non-commutative geometry (a la Ginzburg)

Founding principle of non-commutative geometry: generalize the
well-known dualities of the form

O
Spc —= Alg®®
Spec

to the case where Alg is some category of non-commutative
algebras.

Ginzburg's approach: for A any associative algebra,

» take the familiar notions of (commutative) algebraic geometry
and replace A-modules with A-bimodules;

» do not focus on particular constructions (which are not going
to work anymore), but on universal properties;
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Non-commutative symplectic geometry

Non-commutative geometry (a la Ginzburg)

Founding principle of non-commutative geometry: generalize the
well-known dualities of the form

@
Spc —= Alg®®
Spec

to the case where Alg is some category of non-commutative
algebras.
Ginzburg's approach: for A any associative algebra,

» take the familiar notions of (commutative) algebraic geometry
and replace A-modules with A-bimodules;

» do not focus on particular constructions (which are not going
to work anymore), but on universal properties;

» might get something different even when A is commutative!
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Non-commutative symplectic geometry

Some constructions that generalize

» Vector fields as A-bimodule derivations A — A;
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Non-commutative symplectic geometry

Some constructions that generalize

» Vector fields as A-bimodule derivations A — A;

» Kibhler differentials as a universal element (QL.,d) for the
functor Der(A, —): A-Bimod — Set;
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Non-commutative symplectic geometry

Some constructions that generalize

» Vector fields as A-bimodule derivations A — A;

» Kibhler differentials as a universal element (QL.,d) for the
functor Der(A, —): A-Bimod — Set;

» Noncommutative forms Q2 _(A) as elements of the tensor
algebra of the A-bimodule QL (A);
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Non-commutative symplectic geometry

Some constructions that generalize

» Vector fields as A-bimodule derivations A — A;

» Kibhler differentials as a universal element (QL.,d) for the
functor Der(A, —): A-Bimod — Set;

» Noncommutative forms Q2 _(A) as elements of the tensor
algebra of the A-bimodule QL (A);

» Cartan calculus: a degree —1 “interior product” iy and a
degree 0 “Lie derivative” Ly satisfying

Lo = [d, ip]

[Lo, iy] = f1g.4]
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Non-commutative symplectic geometry

The complex of non-commutative differential forms

Hence we have a complex (28.(A),d). However

K ifk=0
0 otherwise

H (Q5(A)) = {
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Non-commutative symplectic geometry

The complex of non-commutative differential forms

Hence we have a complex (28.(A),d). However

K ifk=0
0 otherwise

H (Q5(A)) = {

More interesting is the Karoubi-de Rham complex, defined by
2. (A)

[23:(A), 23.(A)]

as a quotient of graded vector spaces, with

[a b] — ab— ( )degadegbba

DR®(A) :=
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Non-commutative symplectic geometry

The complex of non-commutative differential forms

Hence we have a complex (28.(A),d). However

K ifk=0
0 otherwise

H (Q5(A)) = {

More interesting is the Karoubi-de Rham complex, defined by
2. (A)
[23:(A), 23.(A)]
as a quotient of graded vector spaces, with
[a b] — ab— ( )degadegbba
d, i, £ all descend on DR*(A).

DR®(A) :=
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Non-commutative symplectic geometry

The complex of non-commutative differential forms

Hence we have a complex (28.(A),d). However

K ifk=0
0 otherwise

H (Q5(A)) = {

More interesting is the Karoubi-de Rham complex, defined by
2. (A)
[23:(A), 23.(A)]
as a quotient of graded vector spaces, with
[a b] — ab— ( )degadegbba
d, i, £ all descend on DR*(A).

DR®(A) :=

DRY(A) = A A
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Non-commutative symplectic geometry

Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).
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Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).

> isomorphism &: Der(A) — DRY(A) defined by 0 — ip(w);
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Non-commutative symplectic geometry

Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).

> isomorphism &: Der(A) — DRY(A) defined by 0 — ip(w);

» symplectic derivations (Lg(w) = 0) forming a Lie subalgebra
Der,(A) C Der(A);
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Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).
> isomorphism &: Der(A) — DRY(A) defined by 0 — ip(w);
» symplectic derivations (Lg(w) = 0) forming a Lie subalgebra
Der,(A) C Der(A);
» map 0: DR%(A) — Der,(A) given by f — &~ 1(df)
(“Hamiltonian derivation” associated to f);

Alberto Tacchella Geometry of Gibbons-Hermsen varieties



Non-commutative symplectic geometry

Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).
> isomorphism &: Der(A) — DRY(A) defined by 0 — ip(w);

» symplectic derivations (Lg(w) = 0) forming a Lie subalgebra
Der,(A) C Der(A);

» map 0: DR%(A) — Der,(A) given by f — &~ 1(df)
(“Hamiltonian derivation” associated to f);

» 0 is symplectic iff ip(w) is closed in DRY(A), hamiltonian iff
ip(w) is exact in DR(A);
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Non-commutative symplectic geometry

Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).
> isomorphism &: Der(A) — DRY(A) defined by 0 — ip(w);
» symplectic derivations (Lg(w) = 0) forming a Lie subalgebra
Der,(A) C Der(A);
» map 0: DR%(A) — Der,(A) given by f — &~ 1(df)
(“Hamiltonian derivation” associated to f);
» 0 is symplectic iff ip(w) is closed in DRY(A), hamiltonian iff
ip(w) is exact in DR(A);
» Poisson brackets {f, g} := ig,ig,(w) that make DRO(A) a Lie
algebra;
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Non-commutative symplectic geometry

Non-commutative symplectic geometry

A non-commutative symplectic manifold is given by an associative
algebra A and a closed, non-degenerate 2-form w € DR?(A).
> isomorphism &: Der(A) — DRY(A) defined by 0 — ip(w);
» symplectic derivations (Lg(w) = 0) forming a Lie subalgebra
Der,(A) C Der(A);
» map 0: DR%(A) — Der,(A) given by f — &~ 1(df)
(“Hamiltonian derivation” associated to f);
» 0 is symplectic iff ip(w) is closed in DRY(A), hamiltonian iff
ip(w) is exact in DR(A);
» Poisson brackets {f, g} := ig,ig,(w) that make DRO(A) a Lie
algebra;
> the map 6 fits into an exact sequence of Lie algebras 0 —
H°(DR*(A)) — DR°(A) — Der,(A) — H*(DR®(A)) — 0.
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Quivers and Gibbons-Hermsen varieties

Quivers by example

A quiver is just a directed graph with no constraints on loops and

multiple arcs.
Q oe—eo
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Quivers and Gibbons-Hermsen varieties

Quivers by example

A quiver is just a directed graph with no constraints on loops and

multiple arcs.
Q oe—eo

A representation of a quiver is given by the choice of a (f.d.)
vector space for each vertex and a linear map for each arrow.

Rep(Q, (dl, dg)) = Matdl,dl((c) D Matdl,dZ(C)
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Quivers and Gibbons-Hermsen varieties

Quivers by example

A quiver is just a directed graph with no constraints on loops and

multiple arcs.
Q oe—eo

A representation of a quiver is given by the choice of a (f.d.)
vector space for each vertex and a linear map for each arrow.

Rep(Q, (dl, dg)) = Matdl,dl((c) D Matdl,dZ(C)

On Rep(Q, c7) there is the action of an algebraic group G by
“change of basis”.

Gar.dy) = (GLay (C) x GLa,(C))/C*
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Quivers and Gibbons-Hermsen varieties

Quivers by example

A quiver is just a directed graph with no constraints on loops and

multiple arcs.
Q oe—eo

A representation of a quiver is given by the choice of a (f.d.)
vector space for each vertex and a linear map for each arrow.

Rep(Q, (dl, dg)) = Matdl,dl((c) D Matdl,d2(C)

On Rep(Q, c7) there is the action of an algebraic group G by
“change of basis”.

G(dy,dp) = (GLa; (C) x GLg,(C))/C*
The corresponding quotient,
R(Q,d) = Rep(Q, d)/G;

is the moduli space of representations of Q with dim. vector d.
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Quivers and Gibbons-Hermsen varieties

Where does symplectic geometry enter the picture?

To each quiver Q we can associate its double @, by adding to each
arrow a in @ an arrow a* that goes in the opposite direction.

e
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Quivers and Gibbons-Hermsen varieties

Where does symplectic geometry enter the picture?

To each quiver Q we can associate its double @, by adding to each
arrow a in @ an arrow a* that goes in the opposite direction.

e

Its representation space can be seen as a cotangent bundle:
Rep(Q, d) = T*Rep(Q, d)

thus it is equipped with a canonical symplectic form.
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Quivers and Gibbons-Hermsen varieties

Where does symplectic geometry enter the picture?

To each quiver Q we can associate its double @, by adding to each
arrow a in @ an arrow a* that goes in the opposite direction.

e

Its representation space can be seen as a cotangent bundle:
Rep(Q, d) = T*Rep(Q, d)

thus it is equipped with a canonical symplectic form. Moreover,
the action of Gj on Rep(@Q, d) is just the lift of its action on the
base, hence it is Hamiltonian and has a moment map

w: Rep(Q, c_i) — 93

By judiciously chosing a point in g5, we can obtain some
interesting (smooth, symplectic) varieties via Marsden-Weinstein
reduction.
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Quivers and Gibbons-Hermsen varieties

Where does symplectic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally
associated with @, its path algebra CQ. It is defined as the
C-vector space having as basis the set of pathsin @, with product
given by composition of paths (or 0 if the paths do not compose).
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Quivers and Gibbons-Hermsen varieties

Where does symplectic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally
associated with @, its path algebra CQ. It is defined as the
C-vector space having as basis the set of pathsin @, with product
given by composition of paths (or 0 if the paths do not compose).

a N CQ=A11® A D A @ Axp
Q.l — e A ~C{a, a*,x*x),

G T

a etc.
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Quivers and Gibbons-Hermsen varieties

Where does symplectic geometry enter the picture?

On the other hand, there is a noncommutative algebra naturally
associated with @, its path algebra CQ. It is defined as the
C-vector space having as basis the set of pathsin @, with product
given by composition of paths (or 0 if the paths do not compose).

a N CQ=A11® A D A @ Axp
Q.l — e A ~C{a, a*,x*x),

G T

a etc.

The equivalence class in DR?(CQ) of the 2-form

Whe = Z dada®

acq

endows CQ with a non-commutative symplectic structure.
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Quivers and Gibbons-Hermsen varieties

Gibbons-Hermsen varieties

Take r,n € N and
Vn,r = Matn,n((c) D Matn,ﬂ((c) & Matnvr((c) © Matr’n((c)
= T*(Matnvn((C) ©® Matn,r((c))
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Quivers and Gibbons-Hermsen varieties

Gibbons-Hermsen varieties

Take r,n € N and
Vn,r = Matn,n((c) D Matn,ﬂ((c) & Matnvr((c) © Matr’n((c)
= T*(Matnvn((C) ©® Matn,r((c))

We consider the action of GL,(C) on V,, , given by
G.(X,Y,v,w)=(GXG™1 GYG! Gv,wG™1)
Hamiltonian action with moment map V,, , — gl,(C)

w(X, Y, v,w)=[X, Y]+ vww
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Quivers and Gibbons-Hermsen varieties

Gibbons-Hermsen varieties

Take r,n € N and
Vp,r = Mat,, »(C) & Mat,, ,(C) & Mat, ,(C) & Mat, ,(C)
= T*(Mat, ,(C) & Mat, (C))
We consider the action of GL,(C) on V,, , given by
G.(X,Y,v,w)=(GXG™1 GYG! Gv,wG™1)
Hamiltonian action with moment map V,, , — gl,(C)
w(X, Y, v,w) =X, Y]+ w

For every 7 € C* the action of GL,(C) on u~1(7/) is free, so by
Marsden-Weinstein we have a smooth symplectic manifold of
dimension 2nr

Cnr= ,Uil(T/)/ GLA(C)
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Quivers and Gibbons-Hermsen varieties

The r =1 case

G(n,l) = (GLn(C) X GLl(C))/C* = GL,,((C)
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Quivers and Gibbons-Hermsen varieties

The r =1 case

G(n1) = (GLA(C) x GL1(C))/C* ~ GL,(C)
It turns out that in this case we can use a simpler quiver

Qo = jg . CQ, = C(a, a*)

a

Then DR%(CQ.,) is the vector space of necklace words in a and a*,
with bracket given by

_oros_of s
{f.e} = Dada* 0a* Da

mod [CQ,, CQ,]
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Quivers and Gibbons-Hermsen varieties

The r =1 case

G(n1) = (GLA(C) x GL1(C))/C* ~ GL,(C)
It turns out that in this case we can use a simpler quiver

Qo = jg . CQ, = C(a, a*)

a

Then DR%(CQ.,) is the vector space of necklace words in a and a*,
with bracket given by

_oros_of s
{f.e} = Dada* 0a* Da

mod [CQ,, CQ,]

Theorem (Ginzburg 2000)

Each symplectic variety Cn1 can be embedded as a coadjoint orbit
in the Lie algebra DR%(CQ.).
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Group actions

Calogero-Moser correspondence

Theorem (Berest, Wilson 1999)

The space C := | |,,cryCn,1 parametrizes isomorphism classes of
right ideals in the first Weyl algebra over C

A1 = C(a,a")/(aa" —a*a—1)

Moreover, the natural action of the group Aut A1 on each of the
Cn,1 is transitive.
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Group actions

Calogero-Moser correspondence

Theorem (Berest, Wilson 1999)

The space C := | |,,cryCn,1 parametrizes isomorphism classes of
right ideals in the first Weyl algebra over C

A1 = C(a,a")/(aa" —a*a—1)

Moreover, the natural action of the group Aut A1 on each of the
Cn,1 is transitive.

This was proved by BW in a very roundabout way. But:
Aut A; ~ Aut(CQ,; [a, a*])

the group of symplectic automorphisms of CQ, (i.e., algebra
automorphisms of CQ, preserving [a, a*]).
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Group actions

Calogero-Moser correspondence

Theorem (Berest, Wilson 1999)

The space C := | |,,cryCn,1 parametrizes isomorphism classes of
right ideals in the first Weyl algebra over C

A1 = C(a,a")/(aa" —a*a—1)

Moreover, the natural action of the group Aut A1 on each of the
Cn,1 is transitive.

This was proved by BW in a very roundabout way. But:
Aut A; ~ Aut(CQ,; [a, a*])

the group of symplectic automorphisms of CQ, (i.e., algebra
automorphisms of CQ, preserving [a, a*]).
So from this perspective it is a natural result after all.
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Group actions

A result of Bielawski and Pidstrygach

Next simplest case: r = 2. Taking
BQ y
Qep = p——

we can embed V5 into Rep(@pp, (n,1)).
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Group actions

A result of Bielawski and Pidstrygach

Next simplest case: r = 2. Taking
BQ y
Qep = p——

we can embed V5 into Rep(@pp, (n,1)).

Theorem (Bielawski, Pidstrygach 2008)

The group TAut(CQpp; ) of (tame) symplectic automorphisms of
CQpp acts transitively on Cp ».

Here ¢ = [a, a*] + [x, x*] + [y, y*].
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Group actions

Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezov that
|_|neN Cn,r parametrizes isomorphism classes of a certain class of
right sub-A;-modules in Bj.
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Group actions

Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezov that
Llner Cn,r Parametrizes isomorphism classes of a certain class of
right sub-A;-modules in Bj.

Conjecture (G. Wilson): on Cp, there is a transitive action of

rale « PGL,(C[z])

(where rie s a group of maps of the form eP/, for some
polynomial p € zC[z]).
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Group actions

Some work in progress

It is known from work of Baranowski-Ginzburg-Kustnezov that
Llner Cn,r Parametrizes isomorphism classes of a certain class of
right sub-A;-modules in Bj.

Conjecture (G. Wilson): on Cp, there is a transitive action of

rae x PGL,(C[z])
(where [ is a group of maps of the form ePl, for some
polynomial p € zC[z]).
Theorem (A.T., |. Mencattini)

When r = 2 there is a morphism of groups
i rals PTAut((C@Bp; c)

and the induced action on Cp,> is transitive (at least) on a dense
open subset.
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