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\block{Gibbons-Hermsen manifolds}{
  For every \(n,r\in \bb{N}\) consider the vector space
  \[ \begin{aligned}
    V_{n,r} &= \Mat_{n,n}(\bb{C})\oplus \Mat_{n,n}(\bb{C})\oplus
    \Mat_{n,r}(\bb{C})\oplus \Mat_{r,n}(\bb{C})\\
    &= T^{*}(\Mat_{n,n}(\bb{C})\oplus \Mat_{r,n}(\bb{C}))
  \end{aligned} \]
  The group \(\GL_{n}(\bb{C})\) acts on \(V_{n,r}\) by
  \[ G.(X,Y,v,w) = (GXG^{-1}, GYG^{-1}, Gv, wG^{-1}) \]
  This action is Hamiltonian with moment map \(V_{n,r}\to
  \mathfrak{gl}_{n}(\bb{C})\) given by
  \[ \mu(X,Y,v,w) = [X,Y] - vw \]
  For every \(\tau\in \bb{C}^{*}\) the action of \(\GL_{n}(\bb{C})\) on
  \(\mu^{-1}(\tau I)\) is free. Then we can perform a Marsden-Weinstein
  reduction to obtain a smooth symplectic manifold of dimension \(2nr\)
  \[ \CM_{n,r} = \mu^{-1}(\tau I)/\GL_{n}(\bb{C}) \]
}

\block{The Gibbons-Hermsen integrable system}{
  Denote by \(\CM_{n,r}'\) (resp. \(\CM_{n,r}''\)) the space of quadruples
  \([X,Y,v,w]\) in \(\CM_{n,r}\) such that \(X\) (resp. \(Y\)) is regular
  semisimple (= diagonalizable with distinct eigenvalues). Define
  \[ A_{r}\deq \set{(f,e)\in \bb{C}^{r}\times \bb{C}^{r} | \pair{f}{e} =
    \tau}/\bb{C}^{*} \]
  and denote by \(f_{1}\dots f_{n}\) the rows of the matrix \(v\) and by
  \(e_{1}\dots e_{n}\) the columns of the matrix \(w\).

  \textbf{Theorem.} There is a bijection \(\CM_{n,r}' \to
  (\bb{C}^{n}_{\mathrm{reg}}\times \bb{C}^{n}\times A_{r}^{n})/S_{n}\) defined
  by sending \([X,Y,v,w]\) to the spectrum of \(X\), the \(n\)-tuple of
  diagonal elements of \(Y\) and the pairs \((f_{i},e_{i})\) for each
  \(i=1\dots n\).

  The restriction to \(\CM_{n,r}'\) of the reduced symplectic form is
  \[ \omega = \sum_{i=1}^{n} (\de p_{i}\wedge \de x_{i} + \de f_{i}\wedge \de
  e_{i}) \]
  The Gibbons-Hermsen Hamiltonians [GH84] are given by \(J_{k,\alpha}\deq \tr
  Y^{k}v\alpha w\), where \(k\in \bb{N}\) and \(\alpha\in
  \Mat_{r,r}(\bb{C})\). Complete integrability follows from the relations
  \[ \{J_{k,\alpha},J_{\ell,\beta}\} = J_{k+\ell,[\alpha,\beta]} \]
  In particular (taking \(\tau=1\))
  \[ J_{2,I} = \frac{1}{2}\sum_{i=1}^{n} p_{i}^{2} - \frac{1}{2} \sum_{i\neq j=1}^{n}
  \frac{\pair{f_{i}}{e_{j}}\pair{f_{j}}{e_{i}}}{(q_{i}-q_{j})^{2}} \] 
  If \(r=1\) there are no additional degrees of freedom and we recover the
  well-known (rational) \emph{Calogero-Moser system}.
}

\block{The case $r=1$}{
  The space \(\CM\deq \bigsqcup_{n\in \bb{N}} \CM_{n,1}\) parametrizes
  isomorphism classes of right ideals in the first Weyl algebra over
  \(\bb{C}\),
  \[ A\deq \bb{C}\langle a,a^{*}\rangle / (aa^{*}-a^{*}a-1) \]
  Moreover, the natural action of the group \(\Aut A\) on each of the
  \(\CM_{n,1}\) is \emph{transitive}.

  The group \(\Aut A\) is generated by the family of automorphisms
  \(\Phi_{p}\) defined by \((x,y)\mapsto (x-p'(y),y)\)
  together with the ``formal Fourier transform'' \(\mathcal{F}\) defined by
  \((x,y)\mapsto (-y,x)\).
  These generators act on \(\CM_{n,1}\) as follows:
  \begin{equation}
    \label{eq:0}
    \Phi_{p}.(X,Y) = (X - p'(Y), Y) \quad \mathcal{F}.(X,Y) = (-Y,X)
  \end{equation}
  It turns out that the correct way to generalize these results is to pass
  through \emph{noncommutative symplectic geometry} (Kontsevich, Ginzburg,
  Bocklandt-Le Bruyn).

  The group \(\Aut A\) is isomorphic to the group of automorphisms of the
  free algebra \(F_{2}\deq \bb{C}\langle a,a^{*}\rangle\) preserving the
  element \([a,a^{*}]\) (``noncommutative symplectomorphisms'' of \(F_{2}\)).
  Also, \(F_{2}\) is the path algebra of the quiver
  \[ \ol{Q}_{0} = \xymatrix{\bullet \ar@(ul,dl)[]_{a} \ar@(ur,dr)[]^{a^{*}}} \]
  and \(\CM_{n,1}\) can be seen as a submanifold in the moduli space of
  representations of \(\ol{Q}_{0}\) with dimension vector \((n)\). The action
  \eqref{eq:0} then becomes simply the natural action of \(\Aut
  (\bb{C}\ol{Q}_{0};[a,a^{*}])\) on this space.
}

\block{The case $r=2$}{
  The idea is now to find a suitable family of quivers such that the same
  construction works for every \(r>1\). When \(r=2\), Bielawski and
  Pidstrygach [BP11] considered the quiver
  \[ Q_{2} = {} \xymatrix{\bullet \ar@(ul,dl)[]_{a} \ar@<0.6ex>[rr]^{y} &&
    \bullet \ar@<0.6ex>[ll]^{x}} \]
  Then \(\CM_{n,2}\) can be seen as a submanifold in the moduli space of
  linear representations of \(\ol{Q}_{2}\) with dimension vector \((n,1)\).

  \textbf{Theorem (Bielawski, Pidstrygach 2011).} The group
  \(\TAut(\bb{C}\ol{Q}_{2};c)\) of \emph{tame} symplectic automorphisms of the
  path algebra of \(\ol{Q}_{2}\) acts transitively on \(\CM_{n,2}\).

  Tame automorphisms are defined as follows. Given \(\psi\in \Aut
  \bb{C}\ol{Q}_{2}\), we say that \(\psi\) is:
  \begin{compactitem}
  \item \emph{triangular} if \(\psi\) fixes the arrows \(a\), \(x\) and \(y\);
  \item \emph{affine} if \(\psi\) sends each arrow in \(\ol{Q}_{2}\) to a
    polynomial which is at most linear in each arrow.
  \end{compactitem}
  An automorphism of \(\bb{C}\ol{Q}_{2}\) is called \emph{tame} if it is
  generated by triangular and affine automorphisms.

  Wilson [W09] proposed another group for a (possibly transitive) action on
  \(\CM_{n,2}\):
  \[ \Gamma^{\alg}\deq \Gamma^{\alg}_{\mathrm{sc}} \times \GL_{2}(\bb{C}[z]) \]
  where \(\Gamma^{\alg}_{\mathrm{sc}}\) is the group of matrix-valued
  functions of the form \(\e^{p} I_{2}\) for some \(p\in z\bb{C}[z]\). In
  [MT13] we proved that these two very different approaches are, in fact,
  related:

  \textbf{Theorem (Mencattini, T. 2013).} The group \(\Gamma^{\alg}\) can be
  embedded in \(\TAut(\bb{C}\ol{Q}_{2};c)\) in such a manner that, denoting by
  \(\mathcal{P}\) the subgroup generated by the image of the embedding and the
  symplectic automorphism
  \[ \mathcal{F}_{2}(a,a^{*},x,x^{*},y,y^{*}) = (-a^{*},a,-y^{*},y,-x^{*},x) \]
  the induced action of \(\mathcal{P}\) on \(\CM_{n,2}\) is transitive (at
  least) on the open subset \(\CM_{n,2}'\cup \CM_{n,2}''\) of \(\CM_{n,2}\).
}
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\block{The higher rank case}{
  Our work [T] generalizes Bielawski and Pidstrygach's approach to every
  \(r>2\). The idea is to consider the family of ``zigzag'' quivers
  \[ Z_{r} = \xymatrix{
    \bullet \ar@(ul,dl)[]_{a} \ar@/^2.4ex/[rrrr]|{y_{1}}
    \ar@/_4ex/[rrrr]_{y_{r}}="b" &&&&
    \bullet \ar@/_4ex/[llll]_{x_{1}} \ar[llll]|{x_{2}}="a"
    \ar@{.}"a";"b"} \]
  with \(\ceil{r/2}\) arrows \(x_{i}\colon \bullet\leftarrow \bullet\) and
  \(\floor{r/2}\) arrows \(y_{j}\colon \bullet\rightarrow \bullet\). Then,
  denoting by \(\Q_{r}\deq \ol{Z}_{r}\) their doubles, we can again embed the
  manifold \(\CM_{n,r}\) in the moduli space of representations of \(\Q_{r}\)
  with dimension vector \((n,1)\). This automatically gives for every \(r\in
  \bb{N}\) an action of the group of symplectic automorphisms of the path
  algebra \(\bb{C}\Q_{r}\) on each \(\CM_{n,r}\).
}

\block{Structure of the automorphism group}{
  Let us write
  \begin{equation}
    \label{eq:1}
    \bb{C}\Q_{r} = \mathcal{A}_{11}\oplus \mathcal{A}_{12}\oplus
    \mathcal{A}_{21}\oplus \mathcal{A}_{22}
  \end{equation}
  where \(\mathcal{A}_{ij}\) denotes the linear subspace spanned by the paths
  \(j\to i\). We have the following easy results:
  \begin{compactitem}
  \item \(\mathcal{A}_{11}\) is a free algebra on \(r^{2}+2\) generators;
  \item \(\mathcal{A}_{12}\) is a free left \(\mathcal{A}_{11}\)-module;
  \item \(\mathcal{A}_{21}\) is a free right \(\mathcal{A}_{11}\)-module.
  \end{compactitem}
  Now let \(\psi\) be an automorphism of \(\bb{C}\Q_{r}\) fixing the trivial
  paths at the two vertices. Then \(\psi\) respects the decomposition
  \eqref{eq:1}, hence it induces three bijections
  \[ \app{\psi_{11}}{\mathcal{A}_{11}}{\mathcal{A}_{11}}, \quad
  \app{\psi_{12}}{\mathcal{A}_{12}}{\mathcal{A}_{12}} \quad\text{ and }\quad
  \app{\psi_{21}}{\mathcal{A}_{21}}{\mathcal{A}_{21}} \]
  The correspondence \(\psi\mapsto \psi_{11}\) defines a morphism of groups
  \(\Aut \bb{C}\Q_{r}\to \Aut \mathcal{A}_{11}\); as a consequence, the group
  \(\Aut \bb{C}\Q_{r}\) acts on \(\GL(\mathcal{A}_{11})\) by
  \begin{equation}
    \label{eq:2}
    \psi(M)\deq (\psi_{11}(M_{\alpha\beta}))_{\alpha,\beta=1\dots r} \quad\text{
      for all } M\in \GL_{r}(\mathcal{A}_{11}).
  \end{equation}
  Also, as \(\mathcal{A}_{21}\) is a free \(\mathcal{A}_{11}\)-module of rank
  \(r\) the bijection \(\psi_{21}\) is uniquely determined by a matrix in
  \(\GL_{r}(\mathcal{A}_{11})\).

  \textbf{Theorem.} The map that sends an automorphism \(\psi\) to the
  (unique) matrix \(N^{\psi}\) associated to \(\psi_{12}\) is a crossed
  morphism \(\Aut \bb{C}\Q_{r}\to \GL_{r}(\mathcal{A}_{11})\) with respect to
  the action \eqref{eq:2}, in the sense that
  \[ N^{\sigma\circ \psi} = N^{\sigma} \sigma(N^{\psi}) \]
}

\block{Symplectic automorphisms}{ 
  Let \(c_{r}\deq [a,a^{*}] + \sum_{i} [x_{i},x_{i}^{*}] + \sum_{j}
  [y_{j},y_{j}^{*}]\). An automorphism of \(\bb{C}\Q_{r}\) is
  \emph{symplectic} if \(\psi(c_{r})=c_{r}\). Let us call again an
  automorphism \(\psi\) \emph{triangular} if it fixes the unstarred arrows
  (i.e. \(a\), \(x_{1}, \dots, x_{\ceil{r/2}}\) and \(y_{1}, \dots,
  y_{\floor{r/2}}\)) and \emph{affine} if it depends at most linearly on the
  arrows in \(\Q_{r}\). Then we have the following classification:
  \begin{compactitem}
  \item Triangular symplectomorphisms are of the following form:
    \[ \begin{cases}
      a^{*}\mapsto a^{*} + \frac{\partial f}{\partial a}\\
      x_{i}^{*}\mapsto x_{i}^{*} + \sum_{j=1}^{\floor{r/2}} y_{j}
      \frac{\partial f}{\partial b_{ij}}\\
      y_{j}^{*}\mapsto y_{j}^{*} + \sum_{i=1}^{\ceil{r/2}}
      \frac{\partial f}{\partial b_{ij}} x_{i}
    \end{cases} \]
    where \(f\) is a \emph{necklace word} (i.e., a word modulo cyclic
    permutations) in the free subalgebra of \(\mathcal{A}_{11}\) generated by
    the elements \(a\) and \(b_{ij}\deq x_{i}y_{j}\);
  \item Affine symplectomorphisms form a group isomorphic to
    \(\ASL_{2}(\bb{C})\times \GL_{r}(\bb{C})\), where the first factor acts on
    the linear subspace of \(\bb{C}\Q_{r}\) spanned by \(a\) and \(a^{*}\) and
    the second factor acts on the subspace spanned by the other arrows.
  \end{compactitem}
  The group \(\TAut(\bb{C}\Q_{r};c_{r})\) is again defined as the subgroup
  generated by these two classes of automorphisms.
}

\block{The action on Gibbons-Hermsen manifolds}{
  For every \(r\in \bb{N}\), the group \(\TAut(\bb{C}\Q_{r};c_{r})\) acts on
  \[ \CM_{r}\deq \bigsqcup_{n\in \bb{N}} \CM_{n,r} \]
  The results of [MT13] generalize as follows. Denote by \(P_{r}\) the
  subgroup of \(\TAut(\bb{C}\Q_{r};c_{r})\) generated by those triangular
  symplectomorphisms for which the necklace word \(f\) is of the form \(f =
  p(a)b_{11}\) for some \(p\in \bb{C}[a]\), and by affine symplectomorphisms
  fixing \(a\) and \(a^{*}\).

  \textbf{Theorem.} The map \(\psi\mapsto N^{\psi}\) restricts to an
  isomorphism \(P_{r}\to \GL(\bb{C}[a])\).

  Also, denote by \(\mathcal{P}_{r}\) the semidirect product \(P_{r}\rtimes
  \Aut (\bb{C}\Q_{0};[a,a^{*}])\), where the factor \(\Aut
  (\bb{C}\Q_{0};[a,a^{*}])\) acts only on \(a\) and \(a^{*}\). Then we have
  again the following ``partial'' transitivity result.

  \textbf{Theorem.} For every pair of points \(p,p'\in \CM_{n,r}'\cup
  \CM_{n,r}''\) there exists \(\psi\in \mathcal{P}_{r}\) such that \(p.\psi =
  p'\).
}
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