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Introduction

It seems appropriate to begin a Thesis devoted to a generalization of the KP/CM corre-
spondence by explaining what the KP/CM correspondence is. First of all, let's expand
the two acronyms:

• KP stands for �Kadomtsev-Petviashvili� and refers to the following nonlinear partial
di�erential equation1:

3

4
uyy = (ut −

1

4
uxxx −

3

2
uxu)x (1)

This equation was �rst written down in 1970 by Kadomtsev and Petviashvili [19]
as a two-dimensional version of the popular KdV (Korteweg-de Vries) equation;
the idea was to study the stability properties of one-dimensional solitons against
transverse perturbations. It turns out that equation (1), just like her little sister
KdV, is completely integrable and in fact is today recognized as one of the most
important examples of an integrable PDE in 2 + 1 dimensions.

• CM stands for �Calogero-Moser� and refers to a wide class of (�nite-dimensional)
completely integrable dynamical systems. Here we consider only the very �rst of
these models, nowadays called the rational Calogero-Moser system, which is de�ned
by the Hamiltonian

H =
1

2

n∑
i=1

p2
i +

g2

2

n∑
i,j=1
i 6=j

1

(qi − qj)2
(2)

where qi, pi are the canonical coordinates associated to a set of n point particles of
unit mass moving on a line and g is a coupling constant. This Hamiltonian system
surfaced in 1969 [8,9] as a quantum-mechanical model whose main interest was its
explicit solvability; this was achieved by Calogero in [10]. Noting that the model
is �integrable� in the quantum sense (i.e., one can write down a maximal set of
mutually commuting observables), he conjectured that the same result should hold
for the classical version as well. This suggestion was taken up by Moser, who in [29]
managed to put the equations of motion of the system in Lax form and prove their
integrability. From that point on, this system has been extensively studied and

1Here and elsewhere, as usual in the integrable system literature, a notation such as ux stands for
the partial derivative ∂u

∂x
.

v



vi INTRODUCTION

generalized in every conceivable direction: see e.g. the celebrated review papers by
Olshanetsky and Perelomov [31, 32] dealing with the classical and the quantum
models, respectively.

By the phrase �KP/CM correspondence� we refer to the following fact, discovered by
Krichever in [22]. Let u = u(x, y, t) be a solution of the KP equation (1) that is a
rational function of x vanishing for x→∞. One can readily verify that such a solution
must be of the form

u(x, y, t) = −2
n∑
j=1

(x− xj(y, t))−2 (3)

for some n ∈ N and some functions x1, . . . , xn of y and t. Now suppose the xj 's describe
the position of n particles on a (complex) line, with the y variable serving as evolution
parameter (i.e., �time�) and the t variable frozen. De�ne the corresponding canonical
momenta as pj := 1

2∂yxj . Then we claim that those �particles� evolve exactly as the
particles of a rational CM system, i.e. according to the Hamiltonian (2). Vice versa, if
{xi(t), pi(t)}i=1...n is any solution of a n-particle CM system then there exist a rational
solution u of the KP equation whose poles in x evolve in the same manner.

Although already striking, this phenomenon is even more general. Both the KP equa-
tion and the CM system are the �rst non-trivial members of two corresponding hierar-

chies, respectively of (integrable) partial di�erential equations and of (integrable) �nite-
dimensional Hamiltonian systems. The KP/CM correspondence extends to the whole two
hierarchies, as shown by Shiota [40]: indeed for every n ≥ 1 we have the equalities

∂

∂tn
xi =

∂Hn

∂pi

∂

∂tn
pi = −∂Hn

∂xi
(4)

where tn is the n-th time of the KP hierarchy and Hn is (up to scalar factors) the n-th
Hamiltonian of the CM hierarchy.

A further step forward was taken in the paper [43] by George Wilson. Here the cor-
respondence is motivated on geometrical grounds, in the following manner: the space of
rational solutions of the KP hierarchy is a certain (in�nite-dimensional) Grassmannian,
called the adelic Grassmannian Grad. On the other hand, the solutions of the CM hier-
archy live as integral curves in a �completed� version of the Calogero-Moser phase space
C. Wilson de�ned a bijection β : C → Grad that intertwines the CM �ows on C and the
KP �ows on Grad, thereby giving an explicit identi�cation between the geometry of the
two systems (this construction will be explained at length in Chapter 1).

Before moving on, we would like to make the point that the history of the KP/CM
correspondence is much more complicated than the short sketch we draw above. For
example the �rst evidence of a connection between integrable systems of PDEs and �nite-
dimensional Hamiltonian systems was seen in 1977 by Airault, McKean and Moser [1]:
motivated by the preliminary works [25,41] they studied the rational, trigonometric and
elliptic solutions of the KdV equation (notice that KdV is a reduction of KP) and found
out that the motion of their poles is governed by the CM system of the corresponding
�avour (with certain constraints). These early results were con�rmed and deepened by
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Krichever [22, 23], who established the relationship between rational (elliptic) solutions
of the KP equation and the rational (elliptic) CM system. From that point on, the search
for other correspondences of this kind has become one of the most active �eld in the
theory of integrable systems.

We now return for good to the rational case. At the end of [43], Wilson suggests
that a generalization of his approach to the multicomponent versions of the CM and KP
systems should yield similar results, as indicated by some well-known calculations [13,24];
this Thesis aspires to be a �rst step in this direction.

The idea of generalizing the KP/CM correspondence to a multicomponent setting is
not at all unprecedented; indeed we know of two di�erent works related to this. First
there are the papers [3, 4] by Baranovsky, Ginzburg and Kuznetsov; there they obtain
(among other things) a bijection between a generalization of the adelic Grassmannian and
the disjoint union of some quiver varieties. By taking a particular case, this construction
gives a bijection between a multicomponent version of the adelic Grassmannian and the
(completed) phase space of the multicomponent CM system. However, the connection
with the corresponding dynamical systems is left completely unexplored (indeed, one of
their goals seems to be not to use any result coming from integrable systems theory).

Then there are the papers [5, 6] by Ben-Zvi and Nevins (it is from here that we bor-
rowed the term �KP/CM correspondence�). Their purpose is even more ambitious, since
they treat simultaneously all the possible kinds of potentials (rational, trigonometric and
elliptic); however their work is technically very demanding, hovering at a very abstract
level, and it is di�cult to extract concrete formulas from it.

Compared with these two approaches, our aim is much more modest: we simply in-
troduce some plausible de�nitions for the multicomponent versions of the various Grass-
mannians parametrizing solutions of the KP hierarchy and study the rationality of the
solutions coming from such spaces. Our main results are theorem 2.77, in which we prove
such rationality properties for the solutions of the multicomponent KP hierarchy associ-
ated to what we call �1-point� multicomponent Grassmannians, and theorem 2.103, which
shows that if we restrict ourselves to the matrix KP hierarchy (a sub-hierarchy of the full
multicomponent KP) then every subspace in the multicomponent adelic Grassmannian
(not only the ones whose support consists of a single point) gives a rational solution.

The geometric interpretation of the multicomponent KP/CM correspondence in sub-
section 2.4.4 is still at a very embryonal stage, mainly because of the lack of an explicit
formula ful�lling the rôle that equations (1.94�1.95) play in the scalar setting (i.e., relat-
ing the Baker function and tau function of a point in the Grassmannian to the matrices
that determine a point in the CM phase space).

The Thesis is structured as follows. In the �rst Chapter we review the rational KP/CM
correspondence as developed in [43]; in the �rst three Sections we introduce the various
objects involved (CM phase spaces, Grassmannians, KP hierarchy) and in Section 1.4
we quickly go through the main steps needed to de�ne the map β described above and
establish its properties. In this Chapter we took special care in making homogeneous
and unambiguous the notation used for the various objects (often coming from di�erent
papers) and in clarifying some points usually left implicit in the existing literature.
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In the second Chapter we confront the problem of generalizing the previous construc-
tions to the multicomponent case. Also here a lot of material is well-known: among it
the description of the multicomponent CM system in Section 2.1 and the de�nition of
the multicomponent Segal-Wilson Grassmannian in Section 2.2. The new de�nitions are
mainly contained in subsections 2.2.1 and 2.2.2. The heart of the Thesis is subsection
2.3.4, where we study the rationality of the solutions to the multicomponent KP hierar-
chy and prove the afore-mentioned theorem 2.77. Finally in Section 2.4 we show how to
recover the matrix KP hierarchy from the general framework, prove theorem 2.103 and
relate these results to a known calculation that links the motion of the poles of rational
solutions to the matrix KP equation to the multicomponent CM system.

We would like to emphasize again that the results obtained are of a very preliminary
nature, and that to really clarify the geometric nature of the multicomponent KP/CM
correspondence much is left to do. For example we completely ignore the questions related
to collisions of multicomponent CM particles that feature prominently in [43], neither we
attack the problem of a complete characterization of rational solutions to the multicom-
ponent KP hierarchy (they are surely not exhausted by the rather limited class described
by theorem 2.77). Other hints for future developments may also come from a comparison
of our approach with the algebraic theory of the multivariable KP hierarchy developed
by the Russian school [33�35]; all these directions are promising sources for further work.



Chapter 1

The scalar KP/CM correspondence

In this Chapter we illustrate the scalar KP/CM correspondence. In Section 1.1 we de-
scribe the phase space of the complexi�ed rational Calogero-Moser system by a process of
symplectic reduction. In Section 1.2 we de�ne various in�nite-dimensional Grassmanni-
ans that play a rôle in parametrizing the solutions of the KP hierarchy. In Section 1.3 we
recall the standard de�nition of the KP hierarchy in terms of pseudo-di�erential opera-
tors and the relationship between the points of the Grassmannians previously introduced
and the corresponding solutions. Finally in Section 1.4 we de�ne the map implementing
the correspondence.

1.1 Calogero-Moser spaces

We de�ne the (complexi�ed) rational Calogero-Moser system as the Hamiltonian
system consisting of n point particles of unit mass on the complex plane whose evolution
is determined by the following Hamiltonian1:

H =
1

2

n∑
i=1

p2
i −

1

2

n∑
i,j=1
i 6=j

1

(qi − qj)2
(1.1)

Some care is needed in de�ning the con�guration space for this system, since H is clearly
singular when qi = qj for some pair of distinct indices i and j. So let ∆ ⊆ Cn be the union
of the

(
n
2

)
= 1

2n(n − 1) hyperplanes de�ned by the equations xi = xj for i, j = 1 . . . n,
i < j and put

Cnreg := Cn \∆ (1.2)

This is a (disconnected) open submanifold of Cn parametrizing n-tuples of distinct com-
plex numbers, so the Hamiltonian (1.1) is everywhere de�ned on it. Furthermore, we
consider the n particles as indistinguishable, i.e. we regard two con�gurations that dif-
fer only for the ordering of the particles as the same con�guration. This corresponds to

1Notice that comparing with equation (2) in the Introduction we have �xed g = −i to get an attractive

interaction between the particles; more about this choice in the following.

1



2 CHAPTER 1. THE SCALAR KP/CM CORRESPONDENCE

taking the quotient of Cn by the natural action of the symmetric group Sn, so we de�ne

C(n)
reg := Cnreg/Sn (1.3)

We thus get a connected smooth algebraic variety whose points parametrize the unordered
n-tuples of distinct complex numbers (or, if you prefer, the subsets of C with cardinality
n); this will be the con�guration space for the system with Hamiltonian (1.1).

We will now see, following [43], how the corresponding phase space T ∗(C(n)
reg) may

arise from a symplectic reduction process. This construction is the complex version of
a well-known procedure to solve the (real) CM system that goes back in essence to
Olshanetsky and Perelomov's �projection method� [30] (see also [36]), with later elabora-
tions by Moser [29] and by Kazhdan, Kostant and Sternberg [21]. An important bonus of
the complex case is that the construction itself suggests a candidate for a �completion� of
the phase space, allowing collisions between particles to happen (and to be meaningfully
interpreted).

For any natural number n ∈ N consider the complex vector space

Un := End(Cn)⊕ Cn

A point in Un is speci�ed by a pair (X,w) where X is a n×n matrix and w is a row vector
of length n. By the usual canonical isomorphisms of End(Cn) and Cn with their duals
(using respectively the trace form and the standard bilinear form on Cn), the cotangent
bundle Vn := T ∗Un can be identi�ed with

Vn ∼= End(Cn)⊕ End(Cn)⊕ Cn ⊕ Cn (1.4)

so that a point in Vn may be taken to be a quadruple (X,Y, v, w) comprising two n× n
matrices X and Y , a column vector v and a row vector w; the pair (Y, v) is to be thought
of as a cotangent vector applied on the point (X,w) ∈ Un. Evidently Vn is a complex
vector space of dimension 2n2 + 2n.

The canonical symplectic form on Vn reads

ω(X,Y, v, w) = tr(dY ∧ dX + dv ∧ dw) (1.5)

We now consider the action of the group GL(n,C) on Un given by

G.(X,w) := (GXG−1, wG−1)

and lift it to the cotangent bundle Vn, obtaining

G.(X,Y, v, w) := (GXG−1, GY G−1, Gv,wG−1) (1.6)

As is well known (see e.g. [27]), such a lifted action is automatically Hamiltonian and the
corresponding momentum map J : Vn → gl(n) is given by

J(X,Y, v, w) = [X,Y ]− vw (1.7)
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We �x the point −I ∈ gl(n) and take its inverse image2

C̃n := { (X,Y, v, w) ∈ Vn | [X,Y ]− vw = −I } (1.8)

The chosen point −I ∈ gl(n) is stabilized by the whole of GL(n,C), so that the usual
Marsden-Weinstein procedure yields the reduced space

Cn := C̃n/GL(n,C) (1.9)

that we will call the n-particle Calogero-Moser space. The (disjoint) union of all
these spaces,

C :=
∐
n∈N
Cn (1.10)

will be called simply the Calogero-Moser space.

The following two results are proven in [43].

Theorem 1.11. Cn is a smooth a�ne algebraic variety of dimension 2n.

Very brie�y, the proof goes as follows. It can be shown that the momentum map (1.7)
is a submersion on C̃n, hence by the implicit function theorem C̃n is a smooth subvariety
of Vn of dimension (2n2 + 2n)− n2 = n2 + 2n; but the action of GL(n) on C̃n is free, so
that the quotient space Cn is a smooth a�ne variety of dimension 2n.

Theorem 1.12. Cn is irreducible.

We don't enter the proof of this fact, but we extract from it a lemma that will be
useful later. First, a de�nition:

De�nition 1.13. Let q = (q1, . . . , qn) be a n-tuple of distinct complex numbers. A n×n
matrix Y will be called a Moser matrix associated to q if, for every pair of indices
i, j = 1 . . . n with i 6= j, the o�-diagonal entry Yij is equal to (qi − qj)−1.

The diagonal entries of a Moser matrix are left unconstrained. Matrices of this form
�rst appeared in [29], whence the name.

Theorem 1.14. Let (X,Y, v, w) ∈ C̃n and suppose Y is diagonalizable. Then the eigen-

values of Y are distinct, and the GL(n)-orbit of (X,Y, v, w) contains a representative

such that:

1) Y is diagonal, say Y = −diag(λ1, . . . , λn);

2) w = v> =
(
1 . . . 1

)
;

3) X is a Moser matrix associated to (λ1, . . . , λn).

Moreover such a representative is unique up to the action (1.6) of a permutation matrix.

2It is exactly at this point that we choose to deal with the attractive CM system; to get back the
Hamiltonian (2) in the Introduction we should take the inverse image of the point −igI ∈ gl(n).
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This fact has a number of interesting consequences: for example it shows that not
every n × n matrix can occur as the Y in a point of C̃n (if it is diagonalizable, then it
has to have distinct eigenvalues). Another important corollary is the following: denote by
C′′n the subspace of Cn consisting of the points for which the matrix Y is diagonalizable.
Then there exists a bijection

C′′n → C(n)
reg × Cn (1.15)

de�ned by mapping (X,Y, v, w) to {λ1, . . . , λn}, (α1, . . . , αn), where αi := Xii. Indeed
acting with a permutation matrix on a quadruple (X,Y, v, w) of the form described by
theorem 1.14 has the only e�ect of simultaneously shu�ing the λi and the αi, as it is
immediate to check. So we conclude that a point of C′′n is uniquely determined by the n
(unordered, distinct) eigenvalues of Y and the n (ordered and not necessarily distinct)
complex numbers αi.

Symmetrically we can also introduce the space C′n as the subspace of Cn consisting of
the points for which the matrix X is diagonalizable. Then we have the analogous result:

Theorem 1.16. Let (X,Y, v, w) ∈ C̃n and suppose X is diagonalizable. Then the eigen-

values of X are distinct, and the GL(n)-orbit of (X,Y, v, w) contains a representative

such that:

1) X is diagonal, say X = diag(x1, . . . , xn);
2) v = w> =

(
1 . . . 1

)
;

3) Y is a Moser matrix associated to (x1, . . . , xn).

Moreover such a representative is unique up to the action (1.6) of a permutation matrix.

Exactly as above, we can de�ne a bijection

C′n → C(n)
reg × Cn (1.17)

by (X,Y, v, w) 7→ {x1, . . . , xn}, (p1, . . . , pn), where pi := Yii. We can use the coordinate
system {xi, pi} so de�ned to express the restriction to C′n of the reduced symplectic form
on Cn; a simple calculation then yields

ω(x, p) =

n∑
i=1

dpi ∧ dxi (1.18)

so that C′n is isomorphic, as a symplectic manifold, to the phase space T ∗C(n)
reg of the

complexi�ed rational CM system.
Now for each k ≥ 1 consider the �ows on Vn generated by the Hamiltonians Hk :=

tr(−Y )k; the corresponding equations of motion are trivially integrated to give

tk.(X,Y, v, w) = (X + ktk(−Y )k−1, Y, v, w) (1.19)

where tk is the time variable corresponding to Hk. Clearly these �ows preserve C̃n and
are GL(n)-invariant, so we can project them down to Cn and, by restriction, on C′n. In
particular for k = 2 we have

H2 = trY 2 =
n∑
i=1

p2
i −

n∑
i,j=1
i 6=j

1

(qi − qj)2
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which is, up to a factor of 2, the Hamiltonian (1.1). Generally, the Hk coincide (again up
to constant factors) with the Hamiltonians of the CM hierarchy3, so we conclude that the
time evolution of the n-particle CM hierarchy is embedded in the symplectic manifold
Cn by the �ows (1.19) on its open dense subset C′n. Then it is natural to identify the
bigger manifold Cn with a �partial compacti�cation� of the CM phase space4; the CM
�ows smoothly extends to this completion, and this enables us to continue analytically
the motion through possible collisions between the particles.

In the sequel we will denote by Γ the commutative group of all �nite combinations of
CM �ows acting on Cn; then Γ consists of all sequences t = {tk}k≥1 of complex numbers
almost all equal to zero, and its action on Cn is

t.(X,Y, v, w) = (X +
∑
k≥1

ktk(−Y )k−1, Y, v, w) (1.20)

We remark that Γ may be seen as the (additive) group of polynomials with complex co-
e�cients and zero constant term, the correspondence being given by t 7→ p =

∑
k≥1 tkz

k;
with this identi�cation in mind, the action (1.20) reads

p.(X,Y, v, w) = (X + p′(−Y ), Y, v, w) (1.21)

where p′ denotes, as usual, the derivative dp/dz.

1.2 Some in�nite-dimensional Grassmannians

In this Section we introduce various in�nite-dimensional Grassmannians related to the
solutions of the KP hierarchy. Our main references here are [39,42,43], although we will
sometimes change the terminology or the notation employed for clarity's sake.

1.2.1 The rational Grassmannian

LetR be the space of rational functions on the complex projective line CP 1. We denote by
P the subspace of polynomials and by R− the subspace of rational functions that vanish
at in�nity; then the polynomial division algorithm gives us the direct sum decomposition

R = P ⊕R− (1.22)

with associated canonical projection maps π+ : R → P and π− : R → R− (cfr. Appendix

B). The full rational Grassmannian Gr
rat

is the set of closed linear subspacesW ⊆ R
for which there exist polynomials p, q ∈ P such that

pP ⊆W ⊆ q−1P (1.23)

3These are classically de�ned as Hk = 1
k

trY k; of course the additional factor (−1)kk does not alter
the integral curves of the system.

4The compacti�cation is only a partial one because particles can still escape to in�nity.
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Equivalently we can require the existence of a single polynomial p ∈ P such that pP ⊆
W ⊆ p−1P: indeed, if W satis�es (1.23) and m is the least common multiple of p and q,
we have

mP ⊆ pP ⊆W ⊆ q−1P ⊆ m−1P
Given W ∈ Gr

rat
, let us de�ne a linear operator p+ : W → P by p+ := π+|W ; we claim

that this is a Fredholm operator, i.e. it has �nite-dimensional kernel and cokernel. To see
this notice that by (1.23) we can write

W = W ′ ⊕ pP (1.24)

where W ′ is a linear subspace of �nite dimension in R. Clearly p+ acts as the identity
on pP, so

ker p+ = ker p′+ (1.25)

(where we have de�ned p′+ := p+|W ′) and the latter kernel is clearly �nite-dimensional.
Writing similarly P = U ⊕ pP (with dimU = deg p) and noting that im p+ de�nitely
contains the second direct summand of (1.24), we have

coker p+ =
U ⊕ pP
im p+

∼=
U

im p′+
(1.26)

This is a quotient between �nite-dimensional subspaces, so

dim coker p+ = deg p− dim im p′+ (1.27)

is again �nite.
Let's de�ne the virtual dimension of W , denoted vdimW , as the index of the

Fredholm operator p+; then the equalities (1.25-1.27) and the rank-nullity theorem for
p′+ tell us that

vdimW = dim ker p′+ − (deg p− dim im p′+) = dimW ′ − deg p (1.28)

We denote by Grrat the part of Gr
rat

made by subspaces of virtual dimension zero, and
call it the (index zero) rational Grassmannian. Notice that for the time being we
regard these Grassmannians simply as sets; a topology on them will be introduced in
subsection 1.2.4.

Theorem 1.29. A subspace W ∈ Gr
rat

has virtual dimension zero if and only if the

codimension of the inclusion W ⊆ q−1P coincides with the degree of q.

Proof. Conditions (1.23) may be rewritten as qpP ⊆ qW ⊆ P, so

codimq−1PW = codimP qW = dim
P
qW

Now if we quotient out from both spaces in P/qW the common subspace qpP we get
an isomorphic linear space which is the quotient of two manifestly �nite-dimensional
subspaces:

P
qW
∼=
P/qpP
qW/qpP
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Moreover qW/qpP ∼= W/pP = W ′, so the desired codimension is (using (1.28))

deg q + deg p− dimW ′ = deg q − vdimW

i.e. vdimW = deg q − codimq−1PW , as claimed.

In the sequel we will use another, more concrete description of Grrat �rst introduced
in [42] (see also [20]). Let's start again from the linear space P of polynomials with
complex coe�cients; its (algebraic) dual P∗ is simply the linear space Cω of countable
sequences of complex numbers, with the pairing de�ned as follows: given p = {pn}n∈N ∈ P
and ϕ = {ϕn}n∈N ∈ P∗, we have

〈ϕ, p〉 =
∑
n∈N

ϕnpn

(notice that the sum is �nite precisely because p is a polynomial). Consider now the
family of linear functionals E = {evr,λ}r∈N, λ∈C de�ned as follows:

〈evr,λ, p〉 = p(r)(λ)

where p(r) is the r-th derivative of p. It easy tho check that E is linearly independent set;
we denote by C the linear subspace of P∗ generated by E . We think of C as a �space of
di�erential conditions� we can impose on polynomials.

For every λ ∈ C we put

Cλ := span{evr,λ}r∈N

Clearly C =
⊕

λ∈C Cλ; moreover, for every r ∈ N we de�ne

C r
λ := span{evs,λ}0≤s<r

with the convention C 0
λ = {0}. Notice that the functionals

1

r!
evr,0 (1.30)

can be identi�ed with the extraction of the r-th coe�cient of a polynomial.

De�nition 1.31. For every c ∈ C the (�nite) set of points λ ∈ C such that the projection
of c on Cλ is nonzero will be called the support of c.

Now let C be a �nite-dimensional subspace in C ; we denote its annihilator in P by

VC := { p ∈ P | 〈c, p〉 = 0 for all c ∈ C }

Similarly, to every subspace V ⊆ P we associate its annihilator in C :

AnnV := { c ∈ C | 〈c, p〉 = 0 for all p ∈ V }
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Theorem 1.32. A subspace W ⊆ R belongs to Gr
rat

if and only if there exists a �nite-

dimensional subspace C ⊆ C and a polynomial q such that W = q−1VC ; moreover W ∈
Grrat if and only if deg q = dimC.

Proof. Given C and q we put W := q−1VC . Let {λ1, . . . , λs} be the support of C; for
every i ∈ {1, . . . , s} let ri be the maximum order of derivation of the functionals evr,λi
involved in the elements of C. We de�ne p :=

∏s
i=1(z − λi)ri+1; then every multiple of p

belongs to VC by construction, and in particular we have that qpP ⊆ VC ⊆ P, or

pP ⊆W ⊆ 1

q
P

This proves that W ∈ Gr
rat
. Now suppose that deg q = dimC, then by de�nition we

have codimP VC = dimC = deg q and theorem 1.29 tells us that W ∈ Grrat.
For the opposite implication take W ∈ Gr

rat
, then there exist p, q ∈ P such that

qpP ⊆ qW ⊆ P; this means that the linear space qW can be de�ned by imposing a certain
number of linearly independent conditions in the dual space of P/qpP. The latter can
be identi�ed with the space U of polynomials with degree less than deg p+ deg q, so qW
is determined by a �nite-dimensional subspace in U∗. On the other hand, U∗ is certainly
generated by the elements of C (since, as we already noted, this space contains the
functionals (1.30)). Thus we can single out a linear subspace C ⊆ C of �nite dimension
such that VC = qW . If moreover vdimW = 0 then by (1.28) the linear space W ′ ∼=
qW/qpP has dimension deg p, so it is de�ned by deg p linearly independent conditions in
U∗; it follows that the subspace C has dimension deg q.

We can assume without loss of generality that the polynomial q is monic. Denote by
Grfin C the set of �nite-dimensional linear subspaces of C ; the set

Grrat∗ := { (C, q) ∈ Grfin C × P | q monic of degree dimC } (1.33)

will be called the dual rational Grassmannian. Then theorem 1.32 de�nes a surjective
map Grrat∗ → Grrat, called the dual map, given by

(C, q)∗ := q−1VC (1.34)

This map is not injective (hence not a real pairing between dual spaces): for example
every pair of the form (C n

0 , z
n) for some n ∈ N is mapped to P.

The rôle of the polynomial q is clari�ed as follows. Let Γ− be the multiplicative group
of non-vanishing rational functions h de�ned on a disc centered at ∞ and such that
f(∞) = 1; using the embedding R ↪→ C((z−1)) de�ned by the Laurent series expansion
at in�nity (see Appendix B) such a function can be written as

h = 1 +
∑
k≥1

hkz
−k (1.35)

This group acts on Grrat in the obvious way (h.W := hW ) and this action is free [39, Prop.
2.4].
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Theorem 1.36. The images by the dual map (1.34) of two points with the same condi-

tions space C lie in the same Γ−-orbit of Grrat.

Proof. Take (C, q1) and (C, q2) ∈ Grrat∗ and let W1 and W2 be the corresponding points
in Grrat. Then η := q1

q2
is the quotient of two monic polynomials of equal degree, i.e. an

element of Γ− and clearly

ηW1 =
q1

q2

1

q1
VC =

1

q2
VC = W2

We will see later that the points of Grrat that lie in the same Γ−-orbit give the same
solution to the KP equation, so the choice of q only amounts to a sort of �gauge freedom�.

1.2.2 1-point Grassmannians

Given λ ∈ C and k ∈ N we denote by Grλ,k the set of linear subspaces W ∈ Grrat for
which we can choose p = q = (z − λ)k; in other words, we require that vdimW = 0 and

(z − λ)kP ⊆W ⊆ (z − λ)−kP (1.37)

Then theorem 1.29 implies that the codimension of W in (z − λ)−kP is k, whereas
equation (1.28) implies that dimW ′ = k (with W ′ de�ned as usual by (1.24)), i.e. that
the codimension of (z−λ)kP inW is also k. Thus, eachW ∈ Grλ,k is uniquely determined
by the k-dimensional linear subspace W ′ in the 2k-dimensional space

(z − λ)−kP
(z − λ)kP

(1.38)

i.e., each Grλ,k is isomorphic to the �nite-dimensional Grassmannian Gr(k, 2k). We fur-
ther de�ne

Grλ :=
⋃
k∈N

Grλ,k (1.39)

and call it the 1-point Grassmannian at λ. From the point of view of the dual descrip-
tion of Grrat, elements of Grλ are simply the subspaces W = (C, q)∗ for which C ⊆ Cλ,
i.e. the subspaces determined by a set of conditions supported on a single point.

We remark that all 1-point Grassmannians are isomorphic: indeed the translation
z 7→ z − λ gives a bijection between Gr0 and Grλ for every λ ∈ C. From now on we will
usually consider the case λ = 0; in view of the above fact, any result we obtain will also
hold for any other 1-point Grassmannian.

To gain a better understanding of the abstract structure of Gr0 it is useful to rein-
terpret the de�nition (1.39) as an inductive limit. To this end consider again the fam-
ily of �nite-dimensional Grassmannians {Gr0,k}k≥0; for each k ∈ N we can de�ne a
map fk : Gr0,k → Gr0,k+1 as follows. A subspace W ∈ Gr0,k has the form W =
span{w1, . . . , wk} ⊕ zkP; since we are only considering the linear structure, this can
be equivalently written

W = span{w1, . . . , wk, z
k} ⊕ zk+1P
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Thus we can see W as a subspace in z−k−1P ⊆ R; quotienting by zk+1P we obtain a
(k + 1)-dimensional linear subspace in z−k−1P/zk+1P, i.e. an element of Gr0,k+1. This
de�nes an inductive system of sets {Gr0,k}k≥0 and maps {fk}k≥0, and the corresponding
limit is again Gr0:

lim−→
k∈N

Gr0,k = Gr0

as it is immediate to verify.

We now describe how the well-known cell structure of Gr0 (cfr. [37]) arises in this
setting. In every linear space z−kP/zkP we have the canonical basis

(zk−1, zk−2, . . . , z, 1, z−1, . . . , z−k+1, z−k)

This basis de�nes a complete �ag

Vi := span{zk−1, . . . , zk−i} for all 0 ≤ i ≤ 2k

Associated to this �ag we have the corresponding decomposition of Gr0,k
∼= Gr(k, 2k)

in Schubert cells (cfr. Appendix C): for any d ∈ {0, . . . , 2k} the d-dimensional cells are
indexed by the partitions of d of length not higher than k and whose parts are not greater
than k, or in other words by the partitions whose Young diagram is contained in a square
of side k. By passing to the limit k → ∞, every partition is eventually included; so a
point in Gr0 is totally described by a partition p and a point ~α in a (complex) a�ne cell
of dimension |p|.

To recover the linear subspace of R associated to this data we proceed as follows:
given p, let k be the least natural number such that the Young diagram of p is contained
in a square of side k. Then select the corresponding Schubert cell Cσ in Gr(k, 2k) and

pick the point ~α ∈ Cσ; this gives a subspace W ′ ⊆ z−kP
zkP , and the subspace of R we are

looking for is W = W ′ ⊕ zkP.

1.2.3 The adelic Grassmannian

The linear subspace P ⊆ R is a very special one in that it belongs to every 1-point
Grassmannian Grλ (indeed it is the only subspace that satis�es condition (1.37) for
k = 0). Then it makes sense to give the following:

De�nition 1.40. The abstract adelic Grassmannian is the restricted product

GrAd :=
∏′

λ∈C
Grλ (1.41)

with origin P.

Here �restricted product with origin P� means that a family of subspaces W =
{Wλ}λ∈C belongs to GrAd if and only if Wλ = P for all but a �nite set of points in
C; this �nite set is called the support of W. (Incidentally, the similarity between the
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previous de�nition and the construction of the adele ring of a global �eld explains the
terminology �adelic�.)

The description of 1-point Grassmannians as cell complexes obtained in the previ-
ous subsection immediately generalizes to GrAd; indeed, a point W ∈ GrAd is totally
described by the following pieces of data:

• a �nite set of points {λ1, . . . , λn} ⊆ C (its support);

• for every λi a partition pi and a point αi in a complex cell of dimension |pi|.
The points {α1, . . . , αn} (for a given support) will be called the abstract Grassmannian
coordinates of W.

We now show how the abstract adelic Grassmannian (1.41) can be embedded in
the rational Grassmannian Grrat, following (and elaborating a bit on) the approach in
[43, subsection 2.2]; this will also clarify the relationship between the dual mapping of
subsection 1.2.1 and the abstract Grassmannian coordinates de�ned above.

For any λ ∈ CP 1 and for any f, g ∈ R consider the symmetric bilinear form

〈f, g〉λ := res
z=λ

f(z)g(z)dz (1.42)

and denote by AnnλW the annihilator of a subspace W ⊆ R:

Annλ(W ) := { f ∈ R | 〈f, g〉λ = 0 for every g ∈W } (1.43)

We will be particularly interested in the case λ = ∞, so let's try to get an explicit
expression for 〈f, g〉∞. To this end we use again the embedding R ↪→ C((z−1)): let a and
b be the order of (the Laurent series at in�nity representing) f and g, respectively; then

〈f, g〉∞ = [z−1]
∑
i≤a

fiz
i
∑
j≤b

gjz
j = [z−1]

∑
k≤a+b

(
a+b−k∑
`=0

fa−`gk+`−a

)
zk

so that

〈f, g〉∞ =
a+b+1∑
k=0

fa−kgk−a−1

and in particular

〈za, zb〉∞ =

a+b+1∑
k=0

δk,0δk,a+b+1 =

{
1 if a = −b− 1

0 otherwise

It follows immediately that 〈P,P〉∞ = 0 and 〈R−,R−〉∞ = 0, i.e. P and R− are two
(evidently maximal) isotropic subspaces for the inner product space (R, 〈 · , · 〉∞).

Given a subspace W ⊆ R we de�ne

W ∗ := Ann∞W = { f ∈ R | 〈f, g〉∞ = 0 for all g ∈W } (1.44)

Now consider a subspace of the form hW for some h ∈ R; we claim that

(hW )∗ = h−1W ∗ (1.45)
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Indeed, using (1.44),

(hW )∗ = { f ∈ R | 〈f, hg〉∞ = 0 for all g ∈W }

but 〈f, hg〉∞ = 〈hf, g〉∞, hence f ∈ (hW )∗ if and only if hf ∈W ∗, as claimed. From this

we deduce that the correspondence W 7→ W ∗ de�nes an involution on Gr
rat
: indeed if

W ∈ Gr
rat

then there exists p ∈ P such that pP ⊆ W ⊆ p−1P; taking annihilators and
using (1.45) it follows that pP ⊆W ∗ ⊆ p−1P and so W ∗ also belongs to Gr

rat
. The map

W →W ∗ is called the adjoint involution; notice that it preserves Grrat and each Grλ.

Now we can �nally de�ne the embedding i : GrAd → Grrat with the following recipe:
given W = {Wλ}λ∈C ∈ GrAd we put

W 7→W :=
⋂
λ∈C

AnnλW
∗
λ (1.46)

More concretely, the embedding goes as follows. When Wλ = P then Annλ P∗ = Annλ P
is just the set of functions regular in λ, soW contains rational functions which are regular
everywhere on CP 1 except at in�nity and at the support Λ of W. Moreover the residue
theorem applied to a small circle around in�nity tells us that

〈f, g〉∞ = res
z=∞

f(z)g(z)dz = −
∑
λ∈C

res
z=λ

f(z)g(z)dz = −
∑
λ∈C
〈f, g〉λ (1.47)

Now if the support Λ of W consists of a single point λ then, by the previous equality,
we have Annλ V = Ann∞ V = V ∗ for any subspace V , and in particular AnnλW

∗
λ =

(W ∗λ )∗ = Wλ; hence in this case i(W) = Wλ. This of course coincides with the trivial
embedding of Grλ considered as a subset of Grrat.

In the general case, choose for each λ ∈ Λ a natural number kλ such thatW
∗
λ ∈ Grλ,kλ ;

then there exists a basis for W ∗λ of the form

{ω1, . . . , ωkλ , (z − λ)kλ , (z − λ)kλ+1, . . . }

where the ωi are Laurent polynomials in z − λ. Then AnnλW
∗
λ consists of all rational

functions f that have a pole of order at most kλ at λ and that satisfy the kλ conditions

〈f, ωi〉λ = 0 for all 1 ≤ i ≤ kλ (1.48)

Each such equation amounts to a homogeneous linear condition on the coe�cients of the
Laurent series of f at λ, i.e. to an element of Cλ.

So for each λ ∈ Λ we describe Wλ as a space of functions which are regular except for
a pole at ∞ and a pole of order at most kλ at λ, and satisfying the kλ conditions (1.48);
then i(W) is simply the linear subspace of R obtained by imposing simultaneously all
these conditions at the various points λ ∈ Λ.

We denote by Grad the image of the embedding i in Grrat. The relationship with the
dual description for subspaces in Grrat is as follows: let's call a space of conditions C ⊆ C
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homogeneous if it admits a basis made by �1-point conditions�, i.e. di�erential conditions
each one involving a single point:

C =
⊕
λ

(C ∩ Cλ) (1.49)

Notice that for every homogeneous subspace C we can canonically build a polynomial of
degree dimC in the following manner:

qC :=
∏
λ∈C

(z − λ)nλ (1.50)

where nλ := dim(C ∩ Cλ). Then Grad is simply the image with respect to the dual map
(1.34) of the homogeneous �nite-dimensional subspaces of C , with the polynomial q as
de�ned above:

Grad = {W ∈ Grrat |W = (C, q)∗ with C homogeneous and q = qC }

This gives an independent description of Grad inside Grrat �rst obtained in [42].

1.2.4 The Segal-Wilson Grassmannian

This Grassmannian was introduced in [39] (see also [37, Ch. 7] for a slightly di�erent
version). Consider the separable complex Hilbert space L2(S1,C) of square-integrable
functions on the circle. We can view its elements as functions C → C by embedding S1

in the complex plane as the circle γR with center 0 and radius R ∈ R+; let's call H(R) the
Hilbert space so obtained. Every such space comes equipped with the orthonormal basis
{zk}k∈Z via the Laurent expansion of f ∈ H(R) in an annulus centered at the origin and
containing γR. We further de�ne H+(R) := span{zk}k≥0 and H−(R) := span{zk}k<0 (so
that H(R) = H+(R)⊕H−(R)) and denote by π± the orthogonal projections on H±(R).
Notice that H+(R) may be seen as the space of functions γR → C that extends to
holomorphic functions on the disc D0(R) := { z ∈ CP 1 | |z| ≤ R }, and similarly H−(R)
may be seen as the space of functions γR → C that extends to holomorphic functions on
the disc D∞(R) := {z ∈ CP 1| |z| ≥ R} and vanishing at in�nity.

The full Segal-Wilson Grassmannian of H(R), denoted Gr(R), is the set of all
closed linear subspacesW ⊆ H(R) such that π+|W is a Fredholm operator and π−|W is a
compact operator. One can prove (cfr. [37]) that Gr(R) is a Banach manifold modeled on
the space of compact operators H+(R)→ H−(R), and that it decomposes in a countable
number of connected components labeled by the index of π+. Since every component is
isomorphic to each other (via multiplication by zk, with k ∈ Z) it su�ces to consider
one of them; we take the one consisting of subspaces of virtual dimension zero (i.e., the
one that contains H+) and call it the Segal-Wilson Grassmannian of H(R), denoted
Gr(R).

The relationship between the Segal-Wilson Grassmannian and the rational Grassman-
nian previously introduced is worked out in [43, subsection 2.5]. Very brie�y, the story
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goes as follows: for every W ∈ Gr
rat

we can choose R ∈ R+ such that every root of q (the
polynomial that appear in the condition (1.23)) is contained in the open disc |z| < R;
then for every f ∈ W the restriction f |γR is continuous, hence square-integrable on γR;

soW determines a linear subspace in H(R) whose L2-closure belongs to Gr(R)5. By con-
sidering only the virtual dimension zero subspaces we get the corresponding embedding
of Grrat in Gr(R).

We can use this embedding to de�ne a topology on Gr
rat

(and hence on its subspaces,
including Grad) by restriction of the topology naturally de�ned on each Gr(R).

Now let Γ+(R) be the group of non-vanishing analytic functions g : γR → C∗ that
extend to holomorphic functions on the disc D0(R) and such that g(0) = 1; this group
acts from the right on Gr(R) by W 7→ Wg−1. By the very de�nition, every g ∈ Γ+(R)
can be written as

g(z) = 1 +
∑
k≥1

hkz
k (1.51)

where the series has radius of convergence greater than R, so that g is completely deter-
mined by the family of coe�cients {hk}k≥1. Alternatively, since g is de�ned on a simply
connected domain there surely exists a holomorphic function f such that g = ef , and
expanding f in a power series (again with radius of convergence greater than R) we can
write

g(z) = exp
∑
i≥1

tiz
i (1.52)

so that g is also determined by the family of coe�cients {tk}k≥1 (for the relationship
between these two sets of coe�cients see Appendix A). From the latter representation we
see that the group we called Γ can be embedded in each Γ+(R) by mapping t ∈ Γ to the
expression (1.52), i.e. to the entire function ep where p is the polynomial with coe�cients
t. We de�ne an action of Γ on each Gr(R) (hence on Grrat) as follows:

t.W := W e−p (1.53)

We observe that this action preserves each Grλ and so preserves Grad; we conclude that
the abelian group Γ acts continuously on the adelic Grassmannian, and we will see that
this action corresponds to the KP �ows on the space of rational solutions.

1.3 The KP hierarchy

In this Section we de�ne the KP hierarchy of integrable partial di�erential equations. For
the general background and the omitted proofs we refer the reader to [2, 12].

5More precisely, it belongs to the sub-Grassmannian denoted �Gr1� in [39] (notice that R is �xed to
1 in that paper); and vice versa, every element of this sub-Grassmannian corresponds to an element of

Gr
rat

for which we can take R = 1.
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1.3.1 Pseudo-di�erential operators

Let A be a di�erential algebra, i.e. a unitary and associative algebra equipped with a
derivation D, a map D : A → A that satis�es Leibniz's law (namely D(ab) = D(a)b +
aD(b)). The algebra of pseudo-di�erential operators over A, denoted Ψ(A), is de�ned as
follows. As a linear space, it is just the space of formal Laurent series with coe�cients in
A with respect to a formal variable that we call D−1; so every nonzero element of Ψ(A)
can be written in the canonical form

Q =
∑
i≤a

qiD
i for some a ∈ Z (1.54)

with qi ∈ A and qa 6= 0; we say that Q has order a and write ordQ = a. The sum of
two series and the multiplication of a series by an element of A are de�ned in the usual
way. Looking at the canonical form (1.54) we see that to multiply two such series it is
su�cient to know the commutation rule between Di (for all i ∈ Z) and a generic element
of A. Now, when i = 1 Leibniz's rule tells us that

Df = fD + f ′

and this is immediately generalized by induction to every i ≥ 0:

Dif =
∑
k≥0

(
i

k

)
f (k)Di−k (1.55)

But in the present setting this expression makes sense also for i < 0, because it gives
precisely a formal power series in D−1 with coe�cients in A; for example when i = −1
we obtain6

D−1f =
∑
k≥0

(−1)kf (k)D−1−k = fD−1 − f ′D−2 + f ′′D−3 + . . .

So the relation (1.55) completely determines the product in Ψ(A), making it an associa-
tive algebra.

On Ψ(A) we have the projection operators

Q 7→ Q− :=
∑
i≤−1

qiD
i and Q 7→ Q+ :=

∑
0≤i≤a

qiD
i

We denote by Ψ±(A) their images; note that Ψ+(A) is nothing but the algebra of �gen-
uine� polynomial di�erential operators with coe�cients in A, whereas the elements of
Ψ−(A) are formal integral operators; we will call them (formal) Volterra operators
and Ψ−(A) the Volterra (sub)algebra.

6Recall that for every n > 0 we can de�ne
(−n
k

)
:= (−1)k

(
n+k−1

k

)
.
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1.3.2 The KP hierarchy

From now on we assume that the elements of our di�erential algebra A are (smooth)
functions of a countable set of variables t := {ti}i≥1; these variables will serve as the
times of the hierarchy. As we will see, the variable x whose D is the derivation operator
can be identi�ed with t1.

There are several equivalent ways to introduce the KP hierarchy; here we brie�y
summarize the three approaches that will be used in this work.

1. Let φ be a pseudo-di�erential operator of the form

φ = 1 +
∑
i≥1

aiD
−i (1.56)

These operators form a group G under multiplication. For every k ≥ 1 we de�ne
the k-th KP �ow on G by the following equation (�Sato form of the KP hierarchy�):

∂kφ = −(φDkφ−1)−φ (1.57)

where ∂k := ∂
∂tk

is understood to act on the coe�cients of the power series (1.56).
Notice that (1.57) is an equality between Volterra operators; by comparing the two
sides at each order in D−1 we get an in�nite family of partial di�erential equations
in the unknowns {ai}i≥1.

2. Let Q be a pseudo-di�erential operator of the form

Q = D +
∑
i≥1

qiD
−i (1.58)

and denote by Q the corresponding subset of Ψ(A). The k-th KP �ow on Q is
de�ned by the following equation (�Lax form of the KP hierarchy�)7

∂kQ = [Qk+, Q] (1.59)

We claim that this is again an equality between Volterra operators. Indeed on the
left-hand side every non-negative power of D has constant coe�cient and so gets
annihilated by ∂k, whereas the right-hand side can be rewritten as

[Qk+, Q] = −[Qk−, Q] (1.60)

because Qk+ = Qk −Qk− and Qk obviously commutes with Q. But the latter com-
mutator has (maximum) order −1 + 1 − 1 = −1, thus it belongs to Ψ−(A). We
conclude that equation (1.59), just as (1.57), yields another in�nite family of partial
di�erential equations, this time in the unknown functions {qi}i≥1.

7Here and everywhere in the sequel we use the shorthand notation Qk± := (Qk)±.
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3. Finally, we can view the KP hierarchy as the compatibility conditions for the linear
system

Qψ = zψ ∂kψ = Qk+ψ (1.61)

where Q ∈ Q and ψ is the so-called formal Baker function (or wave function),
which is an expression of the form

ψ(t, z) =

(
1 +

∑
i≥1

ai(t)z
−i
)

eξ(t,z) (1.62)

where we have de�ned
ξ(t, z) :=

∑
i≥1

tiz
i (1.63)

The relationship between the objects φ, Q and ψ is as follows. The two pseudo-di�erential
operator are related by the equation

Q = φDφ−1 (1.64)

a procedure known in the literature as dressing [12]. The two sets of coe�cients {ai}
and {qi} are related by a system of equations of the form

a′i + qi +Hi(q, a) = 0 (i ≥ 1) (1.65)

where each Hi is a di�erential polynomial that only depends on {a1, . . . , ai−1} (with
derivatives up to order i− 2) and {q1, . . . , qi−1} (undi�erentiated); for example

q1 = −a′1 (1.65a)

q2 = −a′2 − q1a1 (1.65b)

q3 = −a′3 − q2a1 + q1a
′
1 − q1a2 (1.65c)

and so on. Notice that the correspondence is not one-to-one: if Q is given, the operator
φ satisfying (1.64) is determined only up to transformations of the form

φ 7→ φ(1 + C) (1.66)

where C ∈ Ψ−(A) has constant coe�cients.
The formal Baker function may be seen as a �commutative version� of φ: indeed the

two objects are related by8

ψ(t, z) = φ.eξ(t,z) (1.67)

where the action of a pseudo-di�erential operator on the formal exponential eξ(t,z) is
de�ned by the equality D.eξ(t,z) := zeξ(t,z). It follows in particular that if φ is given by
(1.56), then ψ is given by (1.62) where the functions {ai}i≥1 are exactly the same, so
that the correspondence between φ and ψ is one-to-one.

8More precisely, formal Baker functions live in a free rank 1 module over Ψ(A) with generator eξ(t,z),
see [39, Sect. 4].
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To explain the name �KP hierarchy� for the dynamical system de�ned above we write
down explicitly some of the simplest cases of equation (1.59). For k = 1 we have

∂1Q = [Q+, Q] = [D,Q] =
∑
i≥1

q′iD
−i (1.68)

whence a system of the form

∂1qi = q′i for all i ≥ 1

This simply means, as anticipated, that the �rst time variable t1 may be identi�ed with x.
For k = 2 we have Q2

+ = D2 + 2q1 and the �rst equations of the corresponding hierarchy
are

∂q1

∂t2
= q′′1 + 2q′2

∂q2

∂t2
= q′′2 + 2q′3 + 2q′1q1 etc. (1.69)

For k = 3 we have Q3
+ = D3 + 3q1D + 3(q′1 + q2), whence

∂q1

∂t3
= q′′′1 + 3q′′2 + 3q′3 + 6q′1q1 etc. (1.70)

Now consider the system consisting of the three equations above:
∂2q1 = q′′1 + 2q′2
∂2q2 = q′′2 + 2q′3 + 2q′1q1

∂3q1 = q′′′1 + 3q′′2 + 3q′3 + 6q′1q1

If we substitute for q′3 and q2 (by deriving in a suitable manner) we get the single equation

3∂2
2q1 − 4∂3q

′
1 + (q′′′1 + 12q′1q1)′ = 0

and putting t2 = y, t3 = t and u = 2q1 we can rewrite it as

3

4
uyy = (ut −

1

4
uxxx −

3

2
uxu)x (1.71)

This is exactly equation (1) in the Introduction, i.e. the Kadomtsev-Petviashvili equation;
in this sense this PDE is the �rst nontrivial member of the hierarchy of equations (1.59).

1.3.3 Solutions to the KP hierarchy coming from the Segal-Wilson
Grassmannian

Here we brie�y review the relationship discovered by Sato [38] between solutions of the
KP hierarchy and points of in�nite-dimensional Grassmannians, using the very general
framework developed by Segal and Wilson in [39].

In the following Gr and Γ+ will denote Gr(R) and Γ+(R) for some �xed choice of R.
For every W ∈ Gr we de�ne

ΓW+ := { g ∈ Γ+ |Wg−1 is transverse } (1.72)
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(a subspace W ∈ Gr is called transverse if π+|W is an isomorphism). For every g ∈ ΓW+
we consider the inverse image of 1 ∈ H+ by π+, which is a function ψ̃W ∈ Wg−1 called
the reduced Baker function associated to W and g. Since π+(ψ̃W ) = 1 it cannot
contain positive powers of z, so it has the form

ψ̃W = 1 +
∑
i≥1

ai(g)z−i (1.73)

for some coe�cients ai (that turns out to be meromorphic functions on Γ+). If we now
multiply ψ̃W by the function g we get an element in the original subspace W ; the Baker
function associated to W is the map ψW which sends g ∈ ΓW+ to this element:

ψW (g, z) =

(
1 +

∑
i≥1

ai(g)z−i
)
g(z) (1.74)

We also de�ne the stationary Baker function as the restriction of ψW to the 1-
parameter subgroup {exz}x∈C: ψW (x, z) := ψW (exz, z).

Now we write g ∈ ΓW+ according to the representation (1.52); then equation (1.74)
reads

ψW (t, z) =

(
1 +

∑
i≥1

ai(t)z
−i
)

eξ(t,z) (1.75)

which is an expression exactly analogous to (1.62), and so corresponds to the following
element of the group G:

φW := 1 +
∑
i≥1

ai(t)D
−i (1.76)

Theorem 1.77. The operator de�ned by (1.76) satis�es the Sato form of the KP equation

(1.57).

This fact was �rst proven in [39]. To obtain the corresponding solution for the KP
hierarchy in Lax form (1.59) we need the associated order one operator QW = φWDφ

−1
W ;

recall that this involves a many-to-one correspondence, so that the points of Gr which give
operators (1.76) related by a transformation of the form (1.66) all determine the same
solution. But it easy to see that such points are precisely the members of a Γ−-orbit in
Gr; hence the action of Γ− does not alter the associated solution, as anticipated.

We remark that the in�nite times tk of the hierarchy are identi�ed with the coe�cients
t determining g ∈ Γ+; in particular the group of �nite combinations of KP �ows is
identi�ed with Γ ⊂ Γ+.

1.3.4 The tau function

Another way to describe the solutions to the KP hierarchy involves the so-called tau
function; the theory of this object is also developed in [39]. For our purposes, it su�ces
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to say that for each W ∈ Gr(R) there exists a holomorphic function τW de�ned up to
constant factors on Γ+(R) and such that the following equality holds (�Sato's formula�):

ψ̃W (g, z) =
τW (gqz)

τW (g)
(1.78)

where for each z ∈ C we de�ne qz : CP 1 → CP 1 as qz(ζ) := 1− ζ
z . Formula (1.78) should

be interpreted as follows: at g ∈ ΓW+ (R) �xed, the reduced Baker function z 7→ ψ̃W (g, z)
clearly extends to the disc D∞(R); then Sato's formula tells us that in the interior of
that disc (where qz ∈ Γ+(R) as a function of ζ) it coincides with the given ratio. Thus,
by continuity, the same formula also holds on the circle γR.

If we now write g in the exponential representation (1.52) and expand qz as

qz(ζ) = exp log(1− ζ

z
) = exp

(
−
∑
k≥1

ζk

kzk

)
(1.79)

then Sato's formula (1.78) becomes

ψ̃W (t, z) =
τW (t− [z−1])

τW (t)
(1.80)

where we have de�ned the �Miwa shift� on the coe�cients t as

t− [z−1] := {tk −
1

kzk
}k≥1 = {x− 1

z
, t2 −

1

2z2
, t3 −

1

3z3
, . . . }

By expanding τW (t− [z−1]) in a Taylor series around z =∞ and substituting in (1.80)
we can express the coe�cients ai(g) of the Baker function associated to W in terms of
the corresponding tau function τW ; in general, they will have the form

ai = −1

i
∂i log τW +

Pi(τW )

τW

where Pi is a polynomial with constant coe�cients in the di�erential operators ∂1 . . . ∂i−1.
In particular we have

a1 = − ∂

∂x
log τW

and since the solution of the KP equation associated to ψW is u = 2q1 = −2a′1 we get
the celebrated formula

u(t) = 2
∂2

∂x2
log τW (t) (1.81)

for the general solution of the KP equation associated to a point W ∈ Gr in terms of its
tau function.

In the sequel we will need an expression for translating the action of Γ+ on Gr to the
corresponding tau functions. This is given by the formula

τWg−1(h) =
τW (gh)

τW (g)
= τW (gh)
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where the second equality follows by ignoring the constant (i.e., not depending on h)
factor τW (g)−1. Using the variables t this becomes

τt.W (s) = τW (t+ s) (1.82)

It follows that, if we �x the normalization of τ in some way, the KP �ows Γ ⊂ Γ+ act on
τ simply as a translation of the corresponding times.

1.3.5 Rationality of the solutions and the adelic Grassmannian

We are now interested in the solutions of the KP equation (or, more generally, of the
whole KP hierarchy) such that the function u is a proper (i.e., vanishing at in�nity)
rational function of the variable x. Recall that u = −2a′1, where a1 is the coe�cient of
z−1 in the Baker function ψ associated to the solution. Suppose now that a1 is a proper
rational function of x. By [39, Prop. 5.17] we know that a1 has at most simple poles,
hence u has the form

u = 2

n∑
j=1

uj(y, t)

(x− xj(y, t))2

Substituting this expression into the KP equation we see that it must be uj = −1 for all
j, so the solutions we are after have the form

u = −2

n∑
j=1

1

(x− xj(y, t))2
(1.83)

Equivalently, by (1.81), these solutions come from points W ∈ Grrat whose tau function
has the form

τ(x, y, t) =
n∏
j=1

(x− xj(y, t)) (1.84)

More generally, the family of functions {qi}i≥1 are expressed by (1.65) in terms of dif-
ferential polynomials of the {ai}i≥1, so to get rational solutions of the KP hierarchy we
should look for the pointsW ∈ Grrat such that all the ai's are proper rational functions of
x, or equivalently such that the reduced Baker function ψ̃W = 1 +

∑
i aiz

−i is a rational
function of x with limit 1 as x → ∞. Such points are completely characterized by the
following:

Theorem 1.85. Let W ∈ Grrat. The following are equivalent:

1) W ∈ Grad;

2) ψ̃W is a rational function of x that tends to 1 as x→∞;

3) τW is a polynomial in x with constant leading coe�cient.

The equivalence 1↔ 2 is proven in [42] and the equivalence 2↔ 3 is an easy conse-
quence of Sato's formula (see also [20]). We can use property 3 to �x the normalization
of the tau function by making τW a monic polynomial in x, as in (1.84).
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To give an idea of why theorem 1.85 holds we summon up a pair of well-known
formulas for the Baker function and the tau function of a point W in Grrat. These are
most easily expressed using the dual description of subsection 1.2.1; so take (C, q) ∈ Grrat∗

and let W = (C, q)∗ be the corresponding point in Grrat. Let d := dimC; we claim that
it su�ces to consider the case q = zd. Indeed for any other choice of q we obtain, by
theorem 1.36, a subspace related to

(
C, zd

)∗
by a rational function η ∈ Γ−, and the

action of such a function on ψ and τ is known [39]: we have

ψηW = ψW η and τηW = η̂τW (1.86)

where the map η 7→ η̂ is de�ned by sending eckz
−k

to e−kcktk for every k > 0.

So we �x q = zd and take a basis (c1, . . . , cd) for C. In [42, Sect. 4] it is argued that
the Baker function ψW must have the form

ψW (g, z) = (1 + a1(g)z−1 + · · ·+ ad(g)z−d)g(z) (1.87a)

where the ai are determined by imposing the d conditions 〈ci, zdψW (g, z)〉 = 0 (for
i = 1 . . . d) identically in g. More explicitly, we have the linear system of equations

〈ci, (zd +

d∑
j=1

aj(g)zd−j)g(z)〉 = 0 (1.87b)

in the unknowns {a1, . . . , ad}, whose coe�cients are expressions involving g and its deriva-
tives evaluated at the points in the support of C.

The tau function associated to W ∈ Grrat also admits a very neat formula that goes
back at least to Krichever. Let again (c1, . . . , cd) be a basis for C with q = zd; then

τW (g) = det(〈ci, zj−1g〉)i,j=1...d (1.88)

Notice that the matrix de�ned above is just the matrix of coe�cients of the linear system
(1.87b), so that the system is determined (and the Baker function exists) exactly when
τW (g) 6= 0, i.e. g ∈ ΓW+ . We also remark that, since ∂xeξ(t,z) = zeξ(t,z), formula (1.88)
may be written also as

τW (g) = det(〈ci, ∂j−1
x g〉)i,j=1...d (1.89)

i.e., as the Wronskian determinant of the functions 〈ci, g〉. The choice of another basis
for C only produces a multiplicative constant, which is irrelevant for tau functions.

Now let's return to theorem 1.85. Take a point W ∈ Grad, then by the discussion
at the end of subsection 1.2.3 we know that W = (C, qC)∗ where C is a homogeneous
space of conditions; let (c1, . . . , cd) be a basis of 1-point conditions for it. Now leave for
a moment the adelic Grassmannian and consider the subspace U := (C, zd)∗ ∈ Grrat, so
that we can apply the previous formulas. Since each ci involves only a single point, from
each equation in the system (1.87b) we can factor out and simplify a term g(λi) and this
leaves a system for the aj 's which has as coe�cients power series such as ∂kz ξ(t, z)

∣∣
z=λ
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where k ∈ N and λ belongs to the support of C (these are polynomials when t ∈ Γ)9. In
particular if we freeze the times tk for k ≥ 2 we see that they depend rationally on x.
Returning to Grad via (1.86) we get an additional factor which has the e�ect of making
every aj a proper rational function (see [42, Lemma 6.1]).

In the same manner, when C is homogeneous the i-th column of the matrixM de�ned
in (1.88) is made up of polynomials multiplied by g(λi) = eξ(t,λi); these exponentials can
be factored out to �nd that τ is the determinant of a matrix of polynomials in the
∂kz ξ(t, z)

∣∣
z=λ

multiplied by the exponential of a linear function of x:

τU = p(t)
d∏
i=1

eξ(t,λi) (1.90)

(this already makes u = 2∂2
x log τ into a rational function). To get back from U =

(C, zd)∗ ∈ Grrat to W = (C, qC)∗ ∈ Grad we must act with

η =
zd∏d

i=1(z − λi)
=

d∏
i=1

z

z − λi
=

d∏
i=1

1

1− λiz−1
=

d∏
i=1

1

qz(λi)
(1.91)

(notice that here the λi are not necessarily distinct); but recall from (1.79) that qz(λi)
−1 =

exp
∑

k≥0(λki /k)z−k, hence

η̂ =

d∏
i=1

e−
∑
k≥0 λ

k
i tk =

d∏
i=1

e−ξ(t,λi)

This factor exactly cancels the corresponding one in (1.90), hence

τW = p(t)

which is a polynomial of degree d in x and degree less than or equal to d for any other
time.

To establish theorem 1.85 it would remain to prove one of the converse implications,
e.g. that only the points of Grad give rise to proper rational solutions; this needs a more
technical (and rather unilluminating) argument for which we refer the reader to [42].

1.4 The scalar KP/CM correspondence

In this section we de�ne, following [43], a map

β : C → Grad

that will turn out to be bijective and equivariant with respect to the CM �ows (on
C) and the KP �ows (on Grad). This gives a purely geometric interpretation of the
correspondence between the motion of the poles of rational KP solutions and the motion
of CM particles.

9More precisely we have ∂kz g = g(z)Pk(ξ′), where Pk is the k-th Faà di Bruno di�erential polynomial
(see e.g. [12]) evaluated on ξ′(t, z) = x+ 2t2z + 3t3z

2 + . . ..
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1.4.1 Simple points

A pointW ∈ GrAd with support Λ will be called simple if, for every λ ∈ Λ, the subspace
Wλ belongs to the (only) 1-dimensional cell of Grλ. Recalling the description of 1-point
Grassmannians in subsection 1.2.2, this means that

Wλ = span{ 1

z − λ
+ α} ⊕ (z − λ)P (1.92)

hence each Wλ is completely determined by a single complex number α. Now if Λ =
{λ1, . . . , λn} then the abstract Grassmannian coordinates of W are simply (α1, . . . , αn),
where αi is the above-de�ned parameter for the subspace Wλi .

We remark that, from the point of view of the dual mapping, the subspace (1.92) is
the annihilator of a condition of the form c = ev1,λ−α ev0,λ, i.e. the simplest possible
kind of 1-point condition. By an easy calculation we see that the action of the adjoint
involution on a subspace of the form (1.92) only involves a change of sign for α:

W ∗λ = span{ 1

z − λ
− α} ⊕ (z − λ)P (1.93)

so that the embedding (1.46) maps W ∈ GrAd to the subspace W ∈ Grad consisting of
rational functions which are regular except for (at most) simple poles at {λ1, . . . , λn}
(and a pole of any order at in�nity) and satisfying the n conditions (1.48):

res
z=λi

(
1

z − λi
− αi

)
f(z)dz = 0 for all i = 1 . . . n

We can calculate the (reduced) Baker function corresponding to such spaces, and the
result is as follows [43, Sect. 3]: let's de�ne Y := diag(−λ1, . . . ,−λn) and let X be the
Moser matrix associated to (λ1, . . . , λn) with diagonal entries (−α1, . . . ,−αn); �nally set
w = v> =

(
1 . . . 1

)
. Then

ψ̃W (t, z) = 1− w(zI + Y )−1(t.X)−1v (1.94)

where t.X denotes exactly the action (1.20) on X, i.e.

t.X = X +
∑
i≥1

iti(−Y )i−1 = X + x− 2t2Y + . . .

Formula (1.94) e�ectively de�nes a correspondence between the space C′′n for every n ∈ N
and the subset of Grad consisting of simple points with support of cardinality n (it is easy
to check that the expression on the right-hand side of (1.94) is invariant under the GL(n)-
action (1.6), so that it really determines a point in C′′n). Moreover this correspondence is
bijective because both spaces are coordinatized by the set {λ1, . . . , λn} and the n-tuple
(α1, . . . , αn).

From (1.94) (or by a similar calculation) also follows an explicit expression for the
tau function associated to W in terms of the corresponding Calogero-Moser matrices:

τW (t) = det t.X (1.95)
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This immediately imply that the correspondence is equivariant, since the action of the
generic CM �ow t on X is exactly the same as the action of the KP �ow t on the tau
function τW (cfr. (1.82)).

1.4.2 Extension to C

It remains to extend the correspondence de�ned above to a map β de�ned on the whole
of Cn. The strategy followed in [43] to achieve this goal is a bit tricky, but the �nal result
is very neat:

Theorem 1.96 (Prop. 4.7 in [43]). The map de�ned on each C′′n by (1.94) extends to a

map β : C → Grad which is continuous and Γ-equivariant.

It remains to show that this extended β is still a bijection. In order to do this let's
de�ne the following partition of Grad:

Grad(n) := {W ∈ Grad | τW is a polynomial of degree n in x }

Then by (1.95) it is clear that β maps Cn into Grad(n).

Theorem 1.97. For each n ∈ N the restriction of β to Cn is a bijection.

To see that this is the case consider �rst the open subset C′n where X is diagonaliz-
able, and denote correspondingly by Grad(n)′ the subset of Grad(n) consisting of those
subspaces W such that the polynomial τW has n distinct roots in x; then by (1.95) we
have that β maps C′n into Grad(n)′. By de�nition, for every W ∈ Grad(n)′ we can write
its tau function in the form10

τW (t) =
n∏
i=1

(x+ xi(t
′)) (1.98)

in such a manner that the functions xi(t
′) are distinct for t′ = 0, hence also for all su�-

ciently small t′. We map this subspace to the point (X,Y, v, w) ∈ C′n as per theorem 1.16
where X = diag(x1(0), . . . , xn(0)) and Y is the associated Moser matrix with diagonal
entries

Yii = −1

2

∂xi
∂t2

(0)

We claim that the map γ so de�ned is an inverse for β. Indeed:

• Starting from the point (X,Y, v, w) ∈ C′n described by the 2n parameters (xi, pi)
we arrive via β to the tau function (1.95), that we write (by freezing the times from
t3 on)

τW (x, t2) = det((X − 2t2Y ) + xI)

10We denote by t′ the times tk with k > 1.
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The roots (in x) of this polynomial, let's call them λi(t2), are the opposite of the
eigenvalues of the matrix X − 2t2Y . Now applying γ we get the conditions{

λi(0) = xi

−1
2∂2λi(0) = pi

The �rst of them is trivial, and the second is true by de�nition of the momenta for
Calogero-Moser particles.

• Starting from a tau function of the form (1.98), let τ̄ be the tau function of β(γ(W ))
and x̄i the corresponding roots; we have to show that xi = x̄i identically in t′. As
before, we certainly have xi(0) = x̄i(0) and similarly ∂2xi(0) = ∂2x̄i(0); but the t2-
evolution of xi is given by the Calogero-Moser equation, and by the Γ-equivariance
of β the same holds for x̄i. This enables us to deduce that τ(x, t2,0) = τ̄(x, t2,0)
(using the uniqueness theorem for ODEs and analytic continuation), and a lemma
by Shiota [40] guarantees that the tau function of a point in Grad is completely
determined by its dependence on the �rst two times.

It remains to prove the bijectivity of β on the singular locus Cn\C′n; this is done using the
properties (established in full generality by theorem 1.96) of continuity and equivariance
of β. For the details please refer to [43].



Chapter 2

The multicomponent KP/CM
correspondence

In this Chapter we start by showing (Section 2.1) how a multicomponent version of the
rational Calogero-Moser system may be obtained by a process of Hamiltonian reduc-
tion which is a direct (albeit not straightforward) generalization of the one employed in
Section 1.1. Then in Section 2.2 we de�ne the multicomponent analogue of the in�nite-
dimensional Grassmannians of Section 1.2 and in Section 2.3 we explain their relation-
ships with solutions of the multicomponent KP hierarchy. Finally in Section 2.4 we focus
on the reduction to the matrix KP hierarchy: we prove the rationality of the solutions
coming from the multicomponent adelic Grassmannian Grad(m) and reinterpret the mul-
ticomponent KP/CM correspondence as a bijection between (two suitable subspaces of)
the phase space of multicomponent CM system and Grad(m).

2.1 Multicomponent Calogero-Moser spaces

In [13] Gibbons and Hermsen introduced a multicomponent generalization of the rational
CM system. The idea is to increase the number of degrees of freedom of the system by
associating to each particle a complex m-dimensional vector for some m ≥ 1; as we will
see later, the case m = 1 corresponds to the standard CM system.

Let's denote by ei the (column) vector associated to the i-th particle and by fi the
corresponding (row) vector of momenta. We identify the product of n copies of Cm with
the space of m× n matrices and write the con�guration space of the new system as

Qn,m := C(n)
reg ×Hom(Cn,Cm)

On the corresponding phase space

T ∗Qn,m = C(n)
reg × Cn ×Hom(Cn,Cm)×Hom(Cm,Cn)

we have the canonical symplectic structure

ω =

n∑
i=1

(dpi ∧ dqi + dfi ∧ dei) (2.1)

27
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As Hamiltonian we take

H =
1

2

n∑
i=1

p2
i −

1

2

n∑
i,j=1
i 6=j

〈fi, ej〉〈fj , ei〉
(qi − qj)2

(2.2)

The resulting equations of motion are

q̈k = −2
n∑
i=1
i 6=k

〈fk, ei〉〈fi, ek〉
(qk − qi)3

(2.3)

ėk = −
n∑
i=1
i 6=k

〈fi, ek〉
(qk − qi)2

ei (2.4)

ḟk =

n∑
i=1
i 6=k

〈fk, ei〉
(qk − qi)2

fi (2.5)

Notice that the evolution of the ei and fj remains in the linear subspace of Cm spanned
by their initial values, thus we can require without loss of generality m ≤ n.

Consider now the n2 quantities fij := 〈fi, ej〉. Their evolution is given by

ḟij = 〈ḟi, ej〉+ 〈fi, ėj〉 =
∑
k 6=i

fikfkj
q2
ki

−
∑
k 6=j

fkjfik
q2
kj

(2.6)

In particular we have ḟii = 0, so the n quantities 〈fi, ei〉 for i = 1 . . . n are constants of
motion. It is then natural to restrict the system to the 2nm-dimensional invariant sub-
manifold of T ∗Qn,m de�ned by the equations 〈fi, ei〉 = c for some constant c independent
of i; in the following we will take

〈fi, ei〉 = 1 (2.7)

Then equations (2.6) can be rewritten

ḟij =
∑
k 6=i,j

fikfkj

(
1

q2
ki

− 1

q2
kj

)
(2.8)

We will call the dynamical system so obtained the rational m-component Calogero-
Moser system. In [13] it is proven that this model retains all the good properties of its
scalar counterpart, i.e. it is completely integrable and also explicitly solvable via purely
algebraic methods.

We now generalize the quotient construction of Section 1.1 to the multicomponent
CM system, again following [13] (see also [43, Sect. 8]).

Take two natural numbers n,m ≥ 1 with m ≤ n and de�ne

Un,m := End(Cn)⊕Hom(Cn,Cm) (2.9)
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Elements of this space are pairs (X,W ) made by a n × n matrix and a m × n matrix.
The cotangent bundle T ∗Un,m is then isomorphic to

Vn,m := End(Cn)⊕ End(Cn)⊕Hom(Cn,Cm)⊕Hom(Cm,Cn) (2.10)

This is a complex vector space of dimension 2n2 + 2nm; a point p ∈ Vn,m is a quadru-
ple (X,Y, V,W ) comprising two n × n matrices, a n ×m matrix and a m × n matrix,
respectively.

On Vn,m we take the symplectic form

ω = tr(dY ∧ dX + dV ∧ dW ) (2.11)

Consider now, as in the scalar case, the action of the group GL(n,C) on Un,m given by

G.(X,V ) = (GXG−1,WG−1) (2.12)

We can lift this action on Vn,m obtaining

G.(X,Y, V,W ) = (GXG−1, GY G−1, GV,WG−1) (2.13)

and the associated momentum map is

J(X,Y, V,W ) = [X,Y ]− VW (2.14)

We consider the inverse image of the point −I ∈ gl(n) and de�ne

C̃n,m := { (X,Y, V,W ) | [X,Y ]− VW = −I } (2.15)

The stabilizer of −I is the whole group GL(n,C), so the Marsden-Weinstein procedure
gives the reduced space

Cn,m := C̃n,m/GL(n,C) (2.16)

that we will call the n-particle, m-components Calogero-Moser space.

A general study of the manifolds (2.16) seems to be signi�cantly more di�cult com-
pared to the case m = 1. To show why this is so let us perform an analysis of the
momentum map equation

[X,Y ]− VW = −I (2.17)

analogous to the one that, for standard Calogero-Moser spaces, enables us to prove
theorems 1.14 and 1.16. Take a point p = (X̃, Ỹ , Ṽ , W̃ ) ∈ C̃n,m such that one of the
�rst two matrices, X̃ say, is diagonalizable, and let G ∈ GL(n) be a matrix such that
GX̃G−1 = diag(x1, . . . , xn). We consider the quadruple (X,Y, V,W ) := G.(X̃, Ỹ , Ṽ , W̃ )
and split the corresponding identity (2.17) in its diagonal and o�-diagonal parts:

m∑
k=1

VikWki = 1 (2.18)
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(xi − xj)Yij =
m∑
k=1

VikWkj (2.19)

Now when m = 1 the n equations (2.18) tell us that no entry of V or W (hence of VW )
can be zero, and comparing with the equations (2.19) this implies that xi − xj 6= 0 for
every i 6= j, i.e. that the eigenvalues of X are pairwise distinct (this is indeed part of the
statement of theorem 1.16). On the other hand no such conclusion can be drawn when
m > 1, since it is entirely possible that both members of (2.19) separately vanish.

To avoid this problem we put ourselves in the dense open subset

C̃′n,m := { (X,Y, V,W ) ∈ C̃n,m | X is diagonalizable with distinct eigenvalues }

This is clearly preserved by the action (2.13), so there is no problem to de�ne the corre-
sponding quotient

C′n,m := C̃′n,m/GL(n,C)

We also de�ne the n row vectors f1, . . . , fn as the rows of the matrix V (i.e., (fi)j := Vij)
and the n column vectors e1, . . . , en as the columns of the matrix W (i.e., (ei)j := Wji);
then we can rewrite equations (2.18) and (2.19) as

〈fi, ei〉 = 1 (2.20)

Yij =
〈fi, ej〉
xi − xj

(2.21)

Equations (2.20) exactly reproduce the constraint (2.7) that we imposed in de�ning the
multicomponent CM system, whereas equations (2.21) imply that the matrix Y has the
form

Y =


p1

〈f1,e2〉
x1−x2 . . . 〈f1,en〉

x1−xn
〈f2,e1〉
x2−x1 p2

. . .
...

...
. . .

. . .
...

〈fn,e1〉
xn−x1 . . . . . . pn

 (2.22)

for some complex numbers p1, . . . , pn.

At this point we would like to spend the residual freedom in the GL(n)-action on
the quadruple (X,Y, V,W ) to normalize the entries of the vectors ei and fi in a suitable
way. Remember that the eigenvalues of X are assumed pairwise distinct, so the residual
symmetry after diagonalization of X is generated by the action of a diagonal matrix D
and a permutation matrix P ; the latter only controls the ordering of the particles. With
regard to D, �rst of all we remark that the constraints (2.20) imply that no fi and no ei
can be the zero vector; this means that every ei, say, has at least a nonzero entry that we
can normalize to 1 using the action of D, and then we can use the n constraints (2.20)
to normalize also the corresponding entry in fi. Notice that when m = 1 this completely
�xes every entry of V and W to 1 (as per the statement of theorem 1.16), so these two
matrices e�ectively disappear from the picture.
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As in the scalar case, we now express the restriction to C′n,m of the reduced symplectic
form on Cn,m using the coordinate system consisting of the 2n complex numbers xi, pi
and the 2n(m− 1) unconstrained entries of ei and fi; we get

ω(x, p, e, f) =

n∑
i=1

(dpi ∧ dxi + dei ∧ dfi) (2.23)

which is exactly the symplectic form (2.1).
We consider for each k ≥ 1 the �ows on Vn,m generated by the Hamiltonians Hk =

tr(−Y )k; again the equations of motion are trivially integrated to give

tk.(X,Y, V,W ) = (X + ktk(−Y )k−1, Y, V,W ) (2.24)

These �ows are GL(n)-invariant and we can project them down to Cn,m and, by restric-
tion, to C′n,m; in particular for k = 2 we have

H2 =
n∑
i=1

p2
i −

n∑
i,j=1
i 6=j

〈fi, ej〉〈fj , ei〉
(qi − qj)2

(2.25)

which is twice the Hamiltonian (2.2).

2.2 Multicomponent Grassmannians

In this Section we de�ne the multicomponent versions of the various in�nite-dimensional
Grassmannians considered in Section 1.2.

2.2.1 The multicomponent rational Grassmannian

We consider the space Rm of m-tuples of rational functions on CP 1 with the direct sum
decomposition

Rm = Pm ⊕Rm− (2.26)

with associated canonical projection maps π+ : Rm → Pm and π− : Rm → Rm− . The full
m-component rational Grassmannian Gr

rat
(m) is the set of closed linear subspaces

W ⊆ Rm for which there exist polynomials p, q ∈ P such that

pPm ⊆W ⊆ q−1Pm (2.27)

This is the straightforward generalization of condition (1.23). We now proceed to compute
the virtual dimension of such a subspace, i.e. the index of p+ := π+|W . Let's write

W = W ′ ⊕ pPm (2.28)

and set p′+ := p+|W ′ ; then by the same reasoning as in the scalar case we have

ker p+
∼= ker p′+ and coker p+

∼=
U

im p′+
(2.29)
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where U is the subspace de�ned by the decomposition Pm = U ⊕ pPm; notice that
dimU = mdeg p, so the analogue of equation (1.27) is

dim coker p+ = m deg p− dim im p′+ (2.30)

whence the following expression for the virtual dimension of W :

vdimW = dimW ′ −m deg p (2.31)

The only di�erence with respect to the scalar formula (1.28) is the factor m; as we will
see, this factor will matter a lot.

The m-component rational Grassmannian Grrat(m) is the subset of Gr
rat

(m)
consisting of subspaces of virtual dimension zero.

Theorem 2.32. A subspace W ∈ Gr
rat

(m) has virtual dimension zero if and only if the

codimension of the inclusion W ⊆ q−1Pm coincides with mdeg q.

The proof goes along the same lines of the one of theorem 1.29 to get the formula

codimq−1PmW = m deg q − vdimW (2.33)

from which follows the claim.

We proceed to introduce the dual description for Gr
rat

(m). The algebraic dual of Pm
is (Cω)m, with the pairing de�ned in the obvious manner. For every k ∈ {1, . . . ,m},
r ∈ N and λ ∈ C we have the functional evk,r,λ de�ned by

〈evk,r,λ, (p1, . . . , pm)〉 = p
(r)
k (λ)

The set E(m) of such functionals is linearly independent; we denote by C (m) the linear
space they generate and take it as our new space of di�erential conditions. We also put

C
(m)
λ := span{evk,r,λ}1≤k≤m, r∈N

and

C
(m)
r,λ := span{evk,s,λ}1≤k≤m, 0≤s<r

with the usual convention C
(m)
0,λ = {0}.

Given c ∈ C (m) we continue to call the �nite set of points λ ∈ C such that the

projection of c on C
(m)
λ is nonzero the support of c. The annihilators of the subspaces

C ⊆ C (m) and V ⊆ Pm are de�ned just as in the scalar case.

Theorem 2.34. A subspace W ⊆ Rm belongs to Gr
rat

(m) if and only if there exists

a �nite-dimensional subspace C ⊆ C (m) and a polynomial q such that W = q−1VC ;
moreover W ∈ Grrat(m) if and only if mdeg q = dimC.
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The proof is exactly analogous to the one of theorem 1.32; the last statement follows
from (2.33), which reads

vdimW = mdeg q − dimC (2.35)

We remark that whereas in the scalar case (m = 1), given the space of conditions C,
we can always choose the polynomial q in such a manner that the resulting subspace W
has virtual dimension zero, this is no longer possible when m > 1, since vdimW = 0
implies dimC = m deg q and this is only possible when m divides the dimension of C.
We conclude that, when m > 1, not every set of di�erential conditions on Pm determines
a subspace of virtual dimension zero.

We de�ne the dual multicomponent rational Grassmannian as

Grrat∗(m) :=

{
(C, q) ∈ Grfin C (m) × P

∣∣∣∣ dimC = dm for some d ∈ N
q monic of degree d

}
(2.36)

Then theorem 2.34 gives a surjective mapping Grrat∗(m)→ Grrat(m) de�ned by (C, q)∗ =
q−1VC which is the m-component version of the dual map of subsection 1.2.1.

To derive the analogue of theorem 1.36 we introduce the group Γ−(m) as the direct
product of m copies of Γ−, seen as a group of diagonal m × m matrices. This group
acts on Grrat(m) by matrix multiplication from the right: given h ∈ Γ−(m) with h =
diag(h1, . . . , hm), hα ∈ Γ− we have

(f1, . . . , fm).h = (h1f1, . . . , hmfm)

We can see that this action is free by applying component-wise the same argument that
works in the scalar case.

Theorem 2.37. The images by the dual map of two points with the same conditions

space C lie in the same Γ−(m)-orbit of Grrat(m).

Indeed given the two subspaces W1 = (C, q1)∗ and W2 = (C, q2)∗ in Grrat(m) the
matrix η := q1

q2
Im belongs to Γ−(m) (notice that q1 and q2 are both of degree m dimC)

and is such that W1η = W2.

2.2.2 The multicomponent adelic Grassmannian

We now turn to the problem of de�ning the multicomponent analogues of 1-point Grass-
mannians and of the abstract adelic Grassmannian.

Given λ ∈ C and k ∈ N we denote by Grλ,k(m) the set of linear subspaces W ∈
Grrat(m) for which we can choose p = q = (z − λ)k:

(z − λ)kPm ⊆W ⊆ (z − λ)−kPm (2.38)

By theorem 2.32 the codimension of W in (z−λ)−kPm is mk and by equation (2.31) the
codimension of (z − λ)kPm in W is also mk. We conclude that each W ∈ Grλ,k(m) is
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uniquely determined by the mk-dimensional linear subspace W ′ in the 2mk-dimensional
space

(z − λ)−kPm

(z − λ)kPm
(2.39)

In other words, Grλ,k(m) ∼= Gr(mk, 2mk).
We now specialize as usual to the λ = 0 case; everything we say will also hold

for any other choice of λ. We consider the family of �nite-dimensional Grassmannians
{Gr0,k}k≥0 and de�ne a map fk : Gr0,k(m)→ Gr0,k+1(m) for any k ∈ N as follows: given
W ∈ Gr0,k(m) of the form

W = span{w1, . . . , wmk} ⊕ zkPm

we rewrite it as

W = span{w1, . . . , wmk, e1z
k, . . . , emz

k} ⊕ zk+1Pm

and see it as a subspace in z−k−1Pm ⊆ Rm; quotienting by zk+1Pm we obtain the
corresponding point in Gr0,k+1. This gives us an inductive system of sets {Gr0,k(m)}k≥0

and maps {fk}k≥0; we de�ne the m-component 1-point Grassmannian at 0 as the
corresponding direct limit:

Gr0(m) := lim−→
k∈N

Gr0,k(m) (2.40)

We claim that Gr0(m) is isomorphic as a set to Gr0, i.e. that there exists a bijection
between them. Indeed this follows immediately from the fact that the two inductive
systems {Gr(k, 2k)}k≥0 and {Gr(mk, 2mk)}k≥0 are co�nal (see [7, Ch. III, �7, Prop. 8]).
This result is not completely unexpected in view of the �scalarization� isomorphism that
will be introduced in the next subsection.

We now analyze the cell structure of Gr0(m). Recall that in subsection 1.2.2 we
used the functions {zk}k∈Z to induce a canonical basis in every linear space z−kP/zkP.
Similarly in this setting we can use the vector-valued functions {eizk}1≤i≤m, k∈Z (where
ei is the m-component vector with 1 in the i-th entry and zero elsewhere) to induce the
basis

(e1z
k−1,
...

emz
k−1,

. . . . . .

e1z,
...

emz,

e1,
...
em,

e1z
−1,
...

emz
−1,

. . . . . .

e1z
−k,
...

emz
−k)

in z−kPm/zkPm. We again consider the associated complete �ag de�ned by

Vmj+i := span{erzs}1≤r≤i, k−1≥s≥k−1−j

for all 1 ≤ i ≤ m and 0 ≤ j ≤ 2k − 1, with the corresponding decomposition of
Gr(mk, 2mk) in Schubert cells. A point in Gr0(m) is still described by a partition p and
a point ~α ∈ C|p|; to recover the linear subspace of Rm associated to this data, let k be
the least natural number such that the Young diagram of p is contained in a square of
side mk and select the corresponding Schubert cell Cσ in Gr(mk, 2mk); then the point
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~α ∈ Cσ determines a subspace W ′ ⊆ z−kPm/zkPm, and the subspace we are looking for
is W = W ′ ⊕ zkPm.

At this point we can de�ne the m-component abstract adelic Grassmannian by recy-
cling de�nition 1.40, i.e. as the restricted product

GrAd(m) :=
∏′

λ∈C
Grλ(m) (2.41)

with origin Pm. Notice that again, as a set, this is exactly the same as the �scalar�
adelic Grassmannian GrAd; the only di�erence lies in the interpretation of its points. For
example, in subsection 1.4.1 we saw that the subspaces in Grλ associated to the (only)
weight 1 partition (1) are of the form

W = span{ 1

z − λ
+ α} ⊕ (z − λ)P

for some α ∈ C; they are the annihilators of c = ev1,λ−α ev0,λ. On the contrary in Grλ(2)
the point determined by the partition (1) is

W = span{(1, 0), (
1

z − λ
, α)} ⊕ (z − λ)P2 (2.42)

which corresponds to the annihilator of the subspace generated by the two conditions
c1 = ev2,0,λ and c2 = ev2,1,λ−α ev1,0,λ.

We proceed to generalize the embedding GrAd → Grrat described in subsection 1.2.3.
For every λ ∈ CP 1 and for any pair of vectors of rational functions f, g ∈ Rm we de�ne
the symmetric bilinear form

〈f, g〉λ := res
z=λ

(f · g)(z)dz

and denote as usual by AnnλW the annihilator of a subspace W ⊆ Rm; moreover we
de�ne W ∗ := Ann∞W . By the same calculations done in the scalar case we see that Pm
and Rm− are two maximal isotropic subspaces for 〈 · , · 〉∞, and that the correspondence
W 7→W ∗ de�nes an involution on Grrat(m) that preserves each Grλ(m).

We can now de�ne an embedding i : GrAd(m) → Grrat(m) that generalizes the one
de�ned by equation (1.46): given W = {Wλ}λ∈C ∈ GrAd(m) we put

W 7→W :=
⋂
λ∈C

AnnλW
∗
λ (2.43)

Again, if the support of W consists of a single point then by (1.47) we just reproduce
the trivial embedding Grλ(m) → Grrat(m). In the general case, for each λ ∈ Λ take a
natural number kλ such that W ∗λ ∈ Grλ,kλ(m); then there exists a basis for W ∗λ of the
form

{ω11, . . . , ω1m, . . . , ωkλ,1, . . . , ωkλ,m, e1(z − λ)kλ , . . . , em(z − λ)kλ , . . . }
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where each ωij is a m-component vector of Laurent polynomials in z−λ. Then AnnλW
∗
λ

consists of all f = (f1, . . . , fm) ∈ Rm such that each component function fi has a pole
of order at most kλ at λ and such that the following mkλ conditions are satis�ed:

〈f, ωij〉λ = 0 for all 1 ≤ j ≤ m, 1 ≤ i ≤ kλ (2.44)

Each of these conditions amounts to a homogeneous linear condition on the coe�cients

of the Laurent series of the fi's at λ, i.e. to an element of C
(m)
λ .

Summing up, i(W) is the space of m-tuples of rational functions which are regular
except for a pole at∞ and a pole of order at most kλ at λ, and satisfying all the conditions
(2.44) at the various points λ in the support of W.

We denote by Grad(m) the image of i in Grrat(m). In terms of the dual map we have
the following equivalent description: let C be a (�nite-dimensional) homogeneous space of
conditions in C (m) and de�ne a polynomial qC as in (1.49) but taking nλ := (dimCλ)/m,
then

Grad(m) = {W ∈ Grrat(m) |W = (C, q)∗ with C homogeneous and q = qC }

2.2.3 The multicomponent Segal-Wilson Grassmannian

We de�ne the m-component Segal-Wilson Grassmannian to be the Grassmannian
de�ned as in subsection 1.2.4 but using the Hilbert space

H(m) = L2(S1,Cm)

with the obvious splitting H(m) = H
(m)
+ ⊕ H

(m)
− in the two subspaces consisting of

functions with only positive (resp. negative) Fourier coe�cients. More precisely, we again
view the elements of H(m) as functions C→ Cm by embedding S1 in C as the circle γR,
and denote H(m)(R) the corresponding Hilbert space; then we denote by Gr(m,R) the
(index zero component of the) Segal-Wilson Grassmannian of H(m)(R).

The previous de�nition is well known in the literature, and indeed it is explicitly used
already in [39], where it serves an essential rôle in de�ning the solution spaces for the
various reductions of the KP hierarchy (notably the KdV hierarchy). However, Segal and
Wilson consistently employ a trick that we call scalarization: namely, they consider the
map H(m) → H(1) de�ned by sending the basis {eizk}i=1...m, k∈Z for H(m) to the basis
{zk}k∈Z for H(1) in the following manner:

eiz
k 7→ zmk+i−1 (2.45)

In other words, to a vector-valued function f : C→ Cm with f = (f1, . . . , fm) they assign
the scalar-valued function f̂ de�ned by �interleaving� its Fourier coe�cients:

f̂(z) = f1(zm) + zf2(zm) + · · ·+ zm−1fm(zm)

This map is bijective: indeed given f̂ ∈ H(1) we can recover the components of f as

fi+1(z) =
1

m

∑
{ζ|ζm=z}

ζ−if̂(ζ)
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Furthermore, the map (2.45) is an isometry and preserves every plausible property of
functions (continuity, di�erentiability, polinomiality, etc.). Anyway we prefer not to adopt
this point of view, since it clearly destroys the geometry of the problem under consider-
ation. On the other hand, the mere existence of such an isomorphism clari�es why the
multicomponent versions of the 1-point Grassmannians and of the adelic Grassmannian
do not contain any more points relative to their scalar counterparts: indeed the two are
automatically in one-to-one correspondence via the map (2.45).

The relationship between the m-component Segal-Wilson Grassmannian and the m-
component rational Grassmannian is of course exactly analogous to the one holding in the
scalar case: givenW ∈ Grrat(m) we choose R ∈ R+ such that every root of the polynomial
q appearing in (2.27) is contained in the open disc |z| < R; then the restrictions f |γR for

all f ∈W determine a linear subspace whose L2-closure belongs to Gr(m,R). Again, this
embedding automatically de�nes a topology on Grrat(m) and its subspaces by restriction.

We next de�ne the group Γ+(m,R) as the direct product of m copies of Γ+(R),
embedded in the loop group LGL(m,C) (which naturally acts on Gr(m)) as the subgroup
of diagonal matrices. Explicitly, we can write g ∈ Γ+(m,R) as

g = diag(g1, . . . , gm) with gα ∈ Γ+(R)

If we take the elements of Gr(m,R) to be row vectors for de�niteness, we thus have an
action of Γ+(m,R) on Gr(m,R) by matrix multiplication from the right:

(
f1 . . . fm

)g1

. . .

gm

 =
(
g1f1 . . . gmfm

)

Using the representation (1.51) for the m functions gi we see that every element g ∈
Γ+(m,R) is described by a set of coe�cients {h(1), . . . ,h(m)} via the equality

g = diag(1 +
∑
k≥1

h
(1)
k zk, . . . , 1 +

∑
k≥1

h
(m)
k zk) (2.46)

Or we can use the representation (1.52), in which case we will write

g = exp diag(
∑
k≥1

t
(1)
k zk, . . . ,

∑
k≥1

t
(m)
k zk) (2.47)

Then g is described by the family of coe�cients {t(1), . . . , t(m)}.

2.3 Multicomponent KP hierarchy

In this Section we brie�y introduce the multicomponent KP hierarchy, referring the reader
to [11,18] for a detailed analysis.
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2.3.1 De�nition

Given m ≥ 1 we denote by Am the di�erential algebra of m ×m matrices with entries
belonging to an algebra of smooth functions of a variable x (with D = ∂

∂x) and m further
families of variables

t(1) := {t(1)
i }i≥1 . . . t(m) := {t(m)

i }i≥1

In the sequel we will often use the shorthand notation t̄ := {t(1), . . . , t(m)}. Now let
Ψ(Am) be the ring of pseudo-di�erential operators with coe�cients in Am, and denote
by G(m) the group of pseudo-di�erential operator of the form

φ = Im +
∑
k≥1

WkD
−k (2.48)

We de�ne the corresponding �dressed� operator as

Q := φDφ−1 = D +
∑
i≥1

UiD
−i (2.49)

Moreover, for every α ∈ {1, . . . ,m} we de�ne

Rα := φEαφ
−1 (2.50)

where Eα is the matrix with 1 in the entry (α, α) and zero elsewhere. Note that

[Q,Rα] = 0 for all α ∈ {1, . . . ,m}

since [Q,Rα] = φ(DEα − EαD)φ−1 = 0; moreover we have

[Rα, Rβ] = 0 (2.51a)
m∑
α=1

Rα = φImφ
−1 = Im (2.51b)

We can now de�ne themulticomponent KP �ow on G(m) with respect to the variable

t
(α)
k by the following equation:

∂kαφ = −(φDkφ−1Rα)−φ (2.52)

where ∂kα := ∂

∂t
(α)
k

, as usual, is understood to act on the coe�cients of a pseudo-

di�erential operator. This gives an in�nite family of (matrix) partial di�erential equa-
tions in the unknowns {Wi}i≥1; notice that (2.52) reduces to (1.57) when m = 1 (taking
R1 = 1).

The evolution equation (2.52) determines the following evolution equations for the
operators Q and Rα:

∂kαQ = [(QkRα)+, Q] (2.53a)

∂kαRβ = [(QkRα)+, Rβ] (2.53b)
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This is the Lax form of the multicomponent KP hierarchy; again equation (2.53a) de-
termines an in�nite family of (matrix) partial di�erential equations in the unknowns
{Ui}i≥1.

Finally let's come to formal Baker functions. Given the set of variables t̄ we de�ne
the matrix-valued map

Ξ(t̄, z) := diag(ξ(t(1), z), . . . , ξ(t(m), z)) =


∑

i≥0 t
(1)
i zi

. . . ∑
i≥0 t

(m)
i zi

 (2.54)

and consider the free rank 1 module over Ψ(Am) consisting of formal expressions of the
form

ψ = ψ̃eΞ(t̄,z)

where ψ̃ ∈ Am((z−1)) is a formal Laurent series in z−1 with coe�cients in Am. We de�ne
an action of Ψ(Am) on these object as follows:

D.(ψ̃eΞ(t̄,z)) := (ψ̃′ + zψ̃)eΞ(t̄,z)

whence

Dn.(ψ̃eΞ(t̄,z)) =
∑
k≥0

(
n

k

)
ψ̃(k)zn−k eΞ(t̄,z) (2.55)

for all n ∈ Z.
Now given φ ∈ G(m) the expression

ψ(t̄, z) := φ.eΞ(t̄,z) = (Im +
∑
i≥1

Wiz
−i)eΞ(t̄,z) (2.56)

will be called the formal Baker function associated to φ. It can be shown that for every
φ ∈ G(m) the associated formal Baker function ψ is an eigenfunction of the operator Q
with respect to the eigenvalue z,

Qψ = zψ (2.57)

Moreover if φ is a solution of (2.52) then

∂kαψ = (QkRα)+ψ (2.58)

so that the multicomponent KP hierarchy may be characterized as the compatibility
condition for the linear system of equations (2.57) and (2.58).

At this point we would like to remark that it is not trivial to explicitly write down
even the �rst instances of the system of partial di�erential equations (2.52) (or (2.53)):
some of the simplest cases, along with a number of useful reductions of this hierarchy,
are studied in [18].
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2.3.2 Solutions of multicomponent KP and Gr(m)

The relationship between the multicomponent Segal-Wilson Grassmannian of subsection
2.2.3 and the multicomponent KP hierarchy introduced above is very similar to the one
holding between their scalar counterparts, explained in subsection 1.3.3.

Let's start with some conventions. As in subsection 1.3.3, we let Gr(m) and Γ+(m)
stand respectively for Gr(m,R) and Γ+(m,R) for some �xed choice of R. Moreover, given
a matrix-valued function ψ(z) we will say that ψ belongs to a subspace W ∈ Gr(m) if
and only if each row of ψ, seen as an element of H(m), belongs to W .

For every W ∈ Gr(m) we de�ne

Γ+(m)W := { g ∈ Γ+(m) |Wg−1 is transverse } (2.59)

where of course �transverse� here means that the orthogonal projection Wg−1 → H
(m)
+

is an isomorphism.

Now in H
(m)
+ we have the m elements {e1, . . . , em} (i.e., the canonical basis of Cm

multiplied by the identity function); we de�ne the reduced Baker function associated
to W and g to be the matrix-valued function ψ whose row ψα is the inverse image of

eα ∈ H(m)
+ by π+|Wg−1 . By de�nition it has the form

ψ̃W = Im +
∑
i≥1

Wi(g)z−i (2.60)

for some matrices {Wi}i≥1 whose entries are functions of g. Now, since each row of the
matrix ψ̃W belongs to the subspace Wg−1, each row of the product matrix ψ̃W g will
belong to the subspace W we started with; the Baker function associated to W is the
map ψW which sends g ∈ Γ+(m)W to this matrix:

ψW (g, z) =

(
Im +

∑
i≥1

Wi(g)z−i
)
g(z) (2.61)

As in the scalar case, if we express g in terms of the family of coe�cients t̄ as de�ned by
equation (2.47) then the expression (2.61) de�nes an element of the group G(m),

φW := Im +
∑
i≥1

Wi(t̄)D
−i (2.62)

such that φW .e
Ξ(t̄,z) = ψW .

Theorem 2.63. The operator de�ned by (2.62) satis�es the multicomponent KP equation

(2.52).

For the proof see [11]. We thus conclude that to each point W ∈ Gr(m) we can
associate a solution to the multicomponent KP hierarchy, equivalently expressed by the
Baker function ψW or by the pseudo-di�erential operator φW .
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To recover the corresponding order one operator QW that solves equation (2.53) we
must use the matrix version of the dressing relations (1.65):

U1 = −W ′1 (2.64a)

U2 = −W ′2 − U1W1 (2.64b)

U3 = −W ′3 − U2W1 + U1W
′
1 − U1W2 (2.64c)

and so on (notice that in the present setting the ordering of factors matters). Again,
the correspondence is not one-to-one: elements of G(m) which are related by �gauge
transformations� of the form φ 7→ φ(Im +

∑
i≥1Ciz

−i), where the Ci's are constant
elements of Am, correspond to the same Q.

2.3.3 The tau function

The tau function for the multicomponent KP hierarchy has been introduced by Dickey
in [11]. Again, we do not need the precise details of its de�nition; the important fact is
that for each subspace W ∈ Gr(m,R) we can de�ne

• a holomorphic function τW on Γ+(m,R), and

• for each pair of indices α, β ∈ {1, . . . ,m} with α 6= β, a holomorphic function τWαβ

also on Γ+(m,R),

all determined up to constant factors. We then have the followingm-component analogue
of Sato's formula (1.78):

ψ̃W (g, z)αβ =


τW (gqzα)

τW (g)
if α = β

z−1 τWαβ(gqzβ)

τW (g)
if α 6= β

(2.65)

where for each z ∈ C and α ∈ {1, . . . ,m} we de�ne qzα to be the element of Γ+(m,R)
that has qz at the (α, α) entry and 1 elsewhere on the diagonal.

If we write g in terms of the coe�cients t̄ de�ned by equation (2.47) then (2.65)
becomes

ψ̃W (t̄, z)αβ =


τW (t̄− [z−1]α)

τW (t̄)
if α = β

z−1 τWαβ(t̄− [z−1]β)

τW (t̄)
if α 6= β

(2.66)

where we have de�ned the multicomponent Miwa shift as

t̄− [z−1]α := {t(γ)
k − δαγ

1

kzk
}k≥1, γ=1...m

Expanding the numerators in (2.66) in a Taylor series around z =∞ we can get explicit
formulas for the (matrix) coe�cients of the Baker function associated to W (hence for
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the corresponding solution to equation (2.52)); for example we have

W1αβ(t̄) =


− 1

τW

∂τW

∂t
(α)
1

if α = β

τWαβ

τW
if α 6= β

(2.67)

W2αβ(t̄) =


1

2τW

(
∂2τW

(∂t
(α)
1 )2

− ∂τW

∂t
(α)
2

)
if α = β

− 1

τW

∂τWαβ

∂t
(β)
1

if α 6= β

(2.68)

and so on. These expressions may be used, via (2.49) and (2.50), to obtain also the
operators Q and Rα (solutions of (2.53)) directly in terms of the tau functions.

2.3.4 Some rational solutions

In this subsection we look for solutions to the m-component KP hierarchy that depend

rationally on the times t
(1)
1 , . . . , t

(m)
1 . Following the trail of the scalar case, we are led

to investigate the conditions under which the entries of the (matrix) coe�cients of the
operatorQW (or equivalently φW ) associated to a pointW ∈ Grrat(m) are proper rational

functions of the variables t
(α)
1 . Anyway we have to be a little careful here, since a priori

it is not at all clear if such a request makes sense or not.

To clarify the matter consider the Lax equation (2.53a) for the rather trivial case
k = 0 (we are temporarily supposing that the elements of our di�erential algebra Am
depend on the m additional times t

(α)
0 ); since (Q0Rγ)+ = Eγ , it reads

∂Uk

∂t
(γ)
0

= [Eγ , Uk] (2.69)

that is,

∂0γukαβ = δαγukγβ − δγβukαγ

for any α, β ∈ {1, . . . ,m}, k ≥ 1. Thus the diagonal elements of Uk are constant with

respect to the times t
(γ)
0 (this corresponds to the fact that the time variable t0 plays no

rôle in the scalar setting), whereas for the generic o�-diagonal element ukαβ with α 6= β
we have an exponential dependence of the form

ukαβ = et
(α)
0 −t

(β)
0

This fact suggests that it is unreasonable to require every entry of Uk to depend rationally

on the times t
(γ)
1 ; we should rather expect a rational dependence for the diagonal elements,

and a dependence of the form gα
gβ
f(t̄) (with f rational) for the entry at position (α, β)

with α 6= β.
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With this idea in mind we turn to the multicomponent versions of formulas (1.87)
and (1.88). Consider �rst the problem of determining the Baker function of a point in
Grrat(m): as in the scalar case, theorem 2.37 coupled with the transformation law

ψWη(g, z) = ψW (gη−1, z) · η for every η ∈ Γ−(m) (2.70)

implies that it is enough to consider the case q = zd. So take a space of conditions
C ⊆ C (m) of dimension md and consider the corresponding subspace W =

(
C, zd

)∗ ∈
Grrat(m); we claim that ψW must have the form

ψW (g, z) =

(
Im +

d∑
j=1

Wj(g)z−j
)
g(z) (2.71)

Indeed by the usual arguments (cfr. [42, Sect. 4]) we have on the one hand that each row
of the matrix-valued function zdψW (g, z) (for every �xed g) belongs to the L2-closure of

VC in H
(m)
+ (R) for some R, and on the other hand that each functional evk,r,λ extends

uniquely to a continuous functional on H
(m)
+ (R); hence it must be (zdψW )α ∈ VC for

every α ∈ {1, . . . ,m}. Now,

(zdψW )αβ =

(
zdδαβ +

∑
j≥1

Wjαβ(g)zd−j
)
gβ(z)

By expressing gβ using the h coe�cients via (2.46) and imposing that every matrix
element so obtained is a polynomial we see that every Wj with j > d must be the zero
matrix, hence the expression (2.71).

To determine the matrices {W1, . . . ,Wd} let (c1, . . . , cmd) be a basis for C; for each
α ∈ {1, . . . ,m} we take the α-th row of zdψW and impose the equalities 〈ci, (zdψW )α〉 = 0
(with i ∈ {1, . . . ,md}). This gives the following linear system of equations:

〈ci,
(
zdδαβ +

d∑
j=1

Wjαβ(g)zd−j
)
gβ(z)〉 = 0 (2.72)

In other words, we have a family ofm linear systems, each of which involvesmd equations,
for a total of m2d scalar equations. The unknowns are of course the m2 entries of the d
matrices {W1, . . . ,Wd}; the coe�cients of these unknowns involve, as in the scalar case,
the gβ 's and their derivatives evaluated at the points in the support of C.

The calculation of the tau function associated to
(
C, zd

)∗ ∈ Grrat(m) is done in [11]
(indeed it serves there as a motivating example for the general theory), and the result is
the following. The �diagonal� tau function τW is given by the determinant

τW (g) = det(〈ci, zj−1gγ〉) i=1...md
j=1...d, γ=1...m

(2.73)

(notice that here zj−1gγ must really be interpreted as the row vector having zj−1gγ in
its γ-th entry and zero elsewhere). More explicitly, the tau function is the determinant
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of the following block matrix:

τW (g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈c1, g1〉 . . . 〈cmd, g1〉
...

...
〈c1, gm〉 . . . 〈cmd, gm〉
〈c1, zg1〉 . . . 〈cmd, zg1〉

...
...

〈c1, zgm〉 . . . 〈cmd, zgm〉
...

...
...

〈c1, z
d−1g1〉 . . . 〈cmd, zd−1g1〉
...

...
〈c1, z

d−1gm〉 . . . 〈cmd, zd−1gm〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.74)

As in the scalar case, this is just the matrix of coe�cients of the linear system (2.72), so
that the system is determined exactly when g ∈ Γ+(m)W . Observe that an expression
such as zj−1gγ may equivalently be read as ∂j−1

1γ gγ .

The �o�-diagonal� tau functions τWαβ are given as follows: consider the family of
(md+ 1)× (md+ 1) matrices indexed by α, β ∈ {1, . . . ,m}

Mαβ :=



〈c1, g1〉 . . . 〈cmd, g1〉 0
...

... z−d

〈c1, gm〉 . . . 〈cmd, gm〉 0
〈c1, zg1〉 . . . 〈cmd, zg1〉 0

...
... z1−d

〈c1, zgm〉 . . . 〈cmd, zgm〉 0
...

...
...

...
〈c1, z

d−1g1〉 . . . 〈cmd, zd−1g1〉 0
...

... z−1

〈c1, z
d−1gm〉 . . . 〈cmd, zd−1gm〉 0

〈c1, z
dgα〉 . . . 〈cmd, zdgα〉 δαβ



(2.75)

where in the last column the only nonzero element is on the β-th row of each block. Then
τWαβ is the cofactor of the element z−1 in the last column. Explicitly:

τWαβ(g) = (−1)m−β det(〈ci, zj−1(gγ + δjdδγβ(zgα − gγ))〉) i=1...md
j=1...d, γ=1...m

(2.76)

We can now study the rationality of Baker functions coming from the points of the m-
component adelic Grassmannian de�ned in subsection 2.2.2. Let's consider �rst the case
in which W belongs to a 1-point Grassmannian.

Theorem 2.77. Let W ∈ Grλ(m), then:
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1) Each diagonal entry of the reduced Baker function ψ̃W is a rational function of the

times t
(1)
1 , . . . , t

(m)
1 that tends to 1 as t

(α)
1 →∞ for all α;

2) The tau function τW is a polynomial in t
(1)
1 , . . . , t

(m)
1 with constant leading coe�cient.

Proof. Just as in the scalar case, the two statements are equivalent by virtue of (the
diagonal part of) Sato's formula (2.65), so it su�ces to prove one of them; we choose

the �rst. By hypothesis we have W =
(
C, (z − λ)d

)∗
with C ⊆ C

(m)
λ of dimension md;

let (c1, . . . , cmd) be a basis for it. De�ne the subspace U :=
(
C, zd

)∗ ∈ Grrat(m); its tau
function is given by (2.73). To compute the diagonal elements of the corresponding Baker
function we use Sato's formula for U :

ψ̃Uαα =
τU (gqζα)

τU (g)
(2.78)

(here we use ζ as a parameter and z as a variable). Since we are only interested in the

times with subscript 1 we will work in the stationary setting, i.e. we put t
(α)
k = 0 for

every k ≥ 2, α = 1 . . .m.
Now, each ci is a condition supported at λ, hence we can de�ne a family of polynomials

{φiγ}i=1...md, γ=1...m (with φiγ only depending on t
(γ)
1 ) by the equality

〈ci, gγ〉 = gγ(λ)φiγ (2.79)

To apply (2.78) we need to know the determinant of the matrices ∂j−1
1γ 〈ci, gγ〉 and

∂j−1
1γ 〈ci, gγ(1− δαγ zζ )〉. As regards the �rst, using (2.79) its generic element is written

∂j−1
1γ 〈ci, gγ〉 = ∂j−1

1γ (gγ(λ)φiγ) = gγ(λ)(∂1γ + λ)j−1φiγ (2.80)

For the second matrix we have

∂j−1
1γ 〈ci, gγ(1− δαγ

z

ζ
)〉 = ∂j−1

1γ 〈ci, gγ〉 − ∂
j−1
1γ 〈ci, δαγgγ

z

ζ
〉 (2.81)

The �rst term is exactly (2.80), whereas the second is

δαγ∂
j
1γ〈ci, gγ〉ζ

−1 = δαγ∂
j
1γ(gγ(λ)φiγ)ζ−1 = δαγgγ(λ)(∂1γ + λ)jφiγζ

−1

putting all together, equation (2.81) becomes

gγ(λ)(∂1γ + λ)j−1
(
φiγ − δαγ(∂1γφiγ + λφiγ)ζ−1

)
that we can rewrite as

gγ(λ)(1− δαγ
λ

ζ
)(∂1γ + λ)j−1

(
φiγ − δαγ

1

ζ − λ
∂1γφiγ

)
(2.82)

But (1− δαγ λζ ) = qζα(λ)γ , so plugging (2.80) and (2.82) into (2.78) we obtain

ψ̃Uαα(g, ζ) = (qζ(λ))d
det
(

(∂1γ + λ)j−1(φiγ − δαγ 1
ζ−λ∂1γφiγ)

)
det ((∂1γ + λ)j−1φiγ)

(2.83)
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Now, the factor (qζ(λ))d disappears when we go back from U toW and we are left with the

ratio of two determinants of matrices with polynomial entries in the times t
(γ)
1 ; this clearly

gives a rational function. Moreover, if we expand the numerator of (2.83) by linearity
over the sum we see that the term obtained by always choosing φiγ exactly reproduces
the polynomial at the denominator, and all the other terms involve a polynomial which

has degree strictly lower than τ in some t
(γ)
1 (since we substitute φiγ with one of its

derivatives); this proves that ψ̃Wαα → 1 as all the t
(α)
1 tend to in�nity.

For the elements of Grad(m) whose support involves more than a single point the
previous proof breaks down. To see why this is so consider for example a point W ∈
Grad(m) obtained by imposing a single set of m conditions {c1λi , . . . , cmλi} in each point
of its support {λ1, . . . , λn} (the general case is not essentially more complicated). Let's
de�ne for each α and each λi the m×m matrices

〈Cλi , gα〉 =

 〈c1λi , gα〉 . . . 〈cmλi , gα〉
...

. . .
...

〈c1λi , z
m−1gα〉 . . . 〈cmλi , zm−1gα〉

 (2.84)

Equivalently, these can be seen as the Wronskian matrices determined by them functions

〈c1λi , gα〉, . . . , 〈cmλi , gα〉 with respect to the variable t
(α)
1 : 〈c1λi , gα〉 . . . 〈cmλi , gα〉

...
. . .

...

∂m−1
1α 〈c1λi , gα〉 . . . ∂m−1

1α 〈cmλi , gα〉


Now consider the subspace U ∈ Grrat(m) determined by the same conditions but with
q = zn. Its tau function is given by (2.74) and, after a suitable sequence of row exchanges,
we are left with the determinant of a matrix in the block form

τU =

∣∣∣∣∣∣∣
〈Cλ1 , g1〉 . . . 〈Cλn , g1〉

...
. . .

...
〈Cλ1 , gm〉 . . . 〈Cλn , gm〉

∣∣∣∣∣∣∣ (2.85)

Now from each block in this matrix we can factor out a term gα(λi), but this clearly does
not make the whole matrix into a matrix of polynomials; instead we have that

τU =

∣∣∣∣∣∣∣∣∣
g1(λ1)〈Cλ1 , g1〉 g1(λ2)〈Cλ2 , g1〉 . . . g1(λn)〈Cλn , g1〉
g2(λ1)〈Cλ1 , g2〉 g2(λ2)〈Cλ2 , g2〉 . . . g2(λn)〈Cλn , g2〉

...
...

. . .
...

gm(λ1)〈Cλ1 , gm〉 gm(λ2)〈Cλ2 , gm〉 . . . gm(λn)〈Cλn , gm〉

∣∣∣∣∣∣∣∣∣ (2.86)

However, if we now suppose that g1 = g2 = · · · = gm (i.e. that g = g̃Im for some g̃ ∈ Γ+)
then we can again collect all the exponential factors out of the matrix (proceeding by
columns, not by rows as in the previous proof) and express τW as the determinant
of a matrix with polynomials entries; then we can expect the rational solutions of the
corresponding sub-hierarchy to be parametrized by the points of the multicomponent
adelic Grassmannian Grad(m). This result will be established in subsection 2.4.2.
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2.3.5 Examples

We now explicitly show some rational solutions of them-component KP hierarchy coming
from points in Grλ(m). Let's start from the casem = 2 and take just the simplest possible
element of Grλ(2); as we know from subsection 2.2.2, this is given by the subspace (2.42)
for some α ∈ C. The corresponding reduced Baker function reads

ψ̃(g, z) = I2 +

(
0 0

1
α
g2(λ)
g1(λ) 0

)
1

z − λ

and the tau functions are

τ(g) = α τ12(g) = 0 τ21(g) =
g2(λ)

g1(λ)

This turns out to be a rather dull solution: the diagonal components are stationary, the
(1, 2)-component is zero and the (2, 1)-component evolves only in the trivial way.

To get a more interesting solution we consider a subspace coming from the cell of
maximal dimension in Grλ,1(2); this is the set of subspaces with Schubert symbol σ = (34)
that corresponds to the partition p(σ) = (22) of weight 4. A generic member of this cell
is described by a point α ∈ C4 which is naturally seen as a 2 × 2 matrix (αij)i,j=1...2,
corresponding to the left half of the matrix representative of this point in Gr(2, 4) (recall
that we are using the canonical basis de�ned in subsection 2.2.2):(

α11 α12 1 0
α21 α22 0 1

)
These abstract Grassmannian coordinates determine the subspace

W = span{( 1

z − λ
+ α11, α12), (α21,

1

z − λ
+ α22)} ⊕ (z − λ)P2

in Grλ(2), which is the annihilator of the linear subspace C ⊆ C (2) generated by the two
conditions {

c1 = ev11λ−α11 ev10λ−α21 ev20λ

c2 = ev21λ−α12 ev10λ−α22 ev20λ

Let's de�ne
Xγλ := ξ′(t(γ), λ) = t

(γ)
1 + 2t

(γ)
2 λ+ 3t

(γ)
3 λ2 + · · · (2.87)

Then the tau functions associated to W are

τW (t̄) = (X1λ − α11)(X2λ − α22)− α12α21

τW12(t̄) = −g1(λ)

g2(λ)
α12 τW21(t̄) = −g2(λ)

g1(λ)
α21

and the reduced Baker function is

ψ̃W = I2 −
1

τ

(
X2λ − α22 α12

g1(λ)
g2(λ)

α21
g2(λ)
g1(λ) X1λ − α11

)
1

z − λ
(2.88)
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The previous example may be easily generalized to every value of m. Indeed consider
a point in the cell of maximal dimension of Grλ,1(m) that comes from the partition
p = (mm) whose Young diagram is a square of sidem. Points in this cell are parametrized
by am×mmatrix which is again the left half of the matrix representing the corresponding
point of Gr(m, 2m): α11 . . . α1m 1 . . . 0

...
. . .

...
...

. . .
...

αm1 . . . αmm 0 . . . 1


These abstract coordinates determine the linear subspace

Wλ,α = span{ω1, . . . , ωm} ⊕ (z − λ)Pm (2.89)

where ω1 = ( 1
z−λ + α11, α12, . . . , α1m), ω2 = (α21,

1
z−λ + α22, . . . , α2m) and so on up to

ωm = (αm1, . . . ,
1

z−λ + αmm). This subspace, in turn, corresponds to the annihilator of
the m conditions 

c1 = ev11λ +a11 ev10λ + · · ·+ a1m evm0λ

...

cm = evm1λ +am1 ev10λ + · · ·+ amm evm0λ

(2.90)

where the matrix A = (aij) is given by −α>. Now,

〈ci, gγ〉 = gγ(λ)(δiγXγλ + aiγ)

so if we de�ne the matrix Xλ := diag(X1λ, . . . , Xmλ) then the tau functions are given by

τW (g) = det(Xλ − α) τWαβ = −gα
gβ
Cβ,α (2.91)

where Cβ,α stands for the (β, α) cofactor of the matrix Xλ − α. Consequently,

ψ̃W (g, z) = Im −
1

τ


C11 C21

g1(λ)
g2(λ) . . . Cm1

g1(λ)
gm(λ)

C12
g2(λ)
g1(λ) C22 . . . Cm2

g2(λ)
gm(λ)

...
...

. . .
...

C1m
gm(λ)
g1(λ) C2m

gm(λ)
g2(λ) . . . Cmm


1

z − λ

These are the solutions coming from the �generic� points of Grλ(m) whose de�ning con-
ditions (2.90) involve only the functionals evkrλ with r ≤ 1. Clearly there are much more
complicated subspaces in Grλ(m), which correspond to points in higher-dimensional a�ne
cells.

2.4 The multicomponent KP/CM correspondence

In this Section we explain how the matrix KP equation arises in the framework previously
developed for the multicomponent KP hierarchy and characterize its rational solutions;
we then reinterpret the computations of [13, 24] as a correspondence between C′n,m and
the space of rank 1 rational solutions of matrix KP.
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2.4.1 The matrix KP hierarchy

In subsection 2.3.1 we saw that the evolution operators for the multicomponent KP
hierarchy are given by

Bkα := (QkRα)+

for any k ≥ 1. Now observe that

m∑
γ=1

Bkγ =
m∑
γ=1

(QkRγ)+ = (Qk
m∑
γ=1

Rγ)+ = Qk+ (2.92)

by (2.51b). In particular for k = 1 we have
∑

γ B1γ = D, and this means that the variable
x whose D is the derivative operator can be identi�ed with the sum of the times with
subscript 1:

x = t
(1)
1 + · · ·+ t

(m)
1 (2.93)

More generally, for every k ≥ 1 we de�ne the new variable

tk :=
m∑
γ=1

t
(γ)
k (2.94)

Then
∂

∂tk
=

m∑
γ=1

∂kγ

and the evolution of Q with respect to these new �times� is

∂

∂tk
Q =

m∑
α=1

∂kαQ =
m∑
α=1

[Bkα, Q] = [
m∑
α=1

Bkα, Q] = [Qk+, Q] (2.95)

This is exactly the same as (1.59), so the corresponding hierarchy of equations will be
identical to the classical KP hierarchy, the only di�erence being that the coe�cients of
Q are now m × m matrices (in particular they do not commute among themselves in
general); this will be called the matrix (or noncommutative) KP hierarchy.

We now replicate the steps that led us to the KP equation in subsection 1.3.2. For
k = 2 we have Q2

+ = D2 + 2U1 and the corresponding evolution equations for U1 and U2

are

∂U1

∂t2
= U ′′1 + 2U ′2 (2.96)

∂U2

∂t2
= U ′′2 + 2U ′3 + 2U1U

′
1 + 2[U1, U2] (2.97)

Similarly for k = 3 we have Q3
+ = D3 + 3U1D+ 3(U2 +U ′1), whence the further equation

∂U1

∂t3
= U ′′′1 + 3U ′′2 + 3U ′3 + 3U ′1U1 + 3U1U

′
1 (2.98)
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We consider the system consisting of the three equations above; again we can simplify
U ′3 between the second and the third, obtaining{

∂2U1 = U ′′1 + 2U ′2
3∂2U2 − 2∂3U1 = −2U ′′′1 − 3U ′′2 − 6U ′1U1 + 6[U1, U2]

Putting u := 2U1, w := U2, y := t2 and t := t3 we can rewrite the resulting system as
follows: 

2wx =
1

2
uy −

1

2
uxx (2.99a)

3wy − ut + 3wxx + uxxx +
3

2
uxu− 3[u,w] = 0 (2.99b)

We will refer to this system as the matrix KP equation. Alternatively, if we admit
explicit integrations in our equations, we can solve (2.99a) for w

w =
1

4

∫ x

uy −
1

4
ux (2.100)

and plug this expression into (2.99b), obtaining

ut =
1

4
uxxx +

3

4
(u2)x +

3

4

∫ x

uyy −
3

4
[u,

∫ x

uy] (2.101)

which is also sometimes called the matrix (or noncommutative) KP equation, see e.g. [16].

Using the framework developed in the previous Sections we can build solutions to
the matrix KP hierarchy starting from the points of the Segal-Wilson multicomponent
Grassmannian. Indeed take W ∈ Gr(m) and consider the evolution given by an element
g ∈ Γ+(m) of the form

g = diag(eξ(
1
m
t,z), . . . , eξ(

1
m
t,z)) (2.102)

where, as always, t = {tk}k≥1; with this choice the constraints (2.94) are automatically
satis�ed, so this action exactly describes the �ows of equations (2.95) in Gr(m). Let's
de�ne g̃ := eξ(m

−1t,z) and h := eξ(t,z) (so that g = g̃Im and g̃m = h); then the Baker and
tau functions for the matrix KP hierarchy are naturally expressed in terms of h only,
since that single function completely controls the �ows of the hierarchy.

2.4.2 Rationality of the solutions

We now prove that the solutions to the matrix KP hierarchy coming from points of
Grad(m) are rational functions of the �rst time variable x = t1.

Theorem 2.103. Let W ∈ Grad(m), then:

1) ψ̃W (h, z) is a matrix-valued rational function of x that tends to Im as x→∞:

2) τW (h) and τWαβ(h) are polynomial functions of x with constant leading coe�cients.
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Proof. Take W ∈ Grad(m), then W = (C, qC)∗ with C ⊆ C (m) homogeneous. Let
(λ1, . . . , λd) be the support of W with each point counted according to its multiplicity

(so that the λi are not necessarily distinct). Then for each i ∈ {1, . . . , d} we can take
exactly m linearly independent conditions at λi that we call (cij)j=1...m. In this way we
get a basis (c11, . . . , cdm) for C made of 1-point conditions.

Now consider the subspace U :=
(
C, zd

)∗ ∈ Grrat(m); it is related to W by the
following element of Γ−(m) (cfr. (1.91)):

η =
d∏
i=1

qz(λi)
−1Im = exp

(∑
k≥0

d∑
i=1

λki
k
z−k
)
Im (2.104)

This corresponds to multiplying the tau function by

η̂ =
m∏
α=1

exp

(
−
∑
k≥0

d∑
i=1

λki t
(α)
k

)
=

m∏
α=1

d∏
i=1

gα(λi)
−1 =

d∏
i=1

h(λi)
−1 (2.105)

since gα = g̃ for every α ∈ {1, . . . ,m} and g̃m = h.
Let's de�ne the family of polynomials {φijγ} (for i = 1 . . . d, j = 1 . . .m, γ = 1 . . .m)

by the equality
〈cij , gγ〉 = g̃(λi)φijγ (2.106)

Again, this works precisely because each cij is a 1-point condition; notice that, although
gγ = g̃ for every γ, the polynomials φ still depend on γ since it is the index of the only
nonzero entry of the row vector on which cij acts.

We can now easily compute the tau functions associated to U by retracing the same
steps as in the proof of theorem 2.77, but now using the polynomials de�ned by (2.106).
Then τU (g) is the determinant of the matrix whose generic element is

g̃(λi)(∂1γ + λi)
k−1φijγ

The term g̃(λi) does not depend on the row indices (k, γ) so we can factor it out from
the determinant to obtain

τU =
d∏
i=1

(g̃(λi))
m det

(
(∂1γ + λi)

k−1φijγ

)
(2.107)

But
∏
i(g̃(λi))

m =
∏
i h(λi) is exactly the inverse of (2.105), so that

τW = det
(

(∂1γ + λi)
k−1φijγ

)
(2.108)

is the determinant of a matrix with polynomial entries in t
(α)
1 = x

m , hence a polynomial
in x and the coe�cient of the top degree term involves only the constants λi. This implies
by Sato's formula that ψ̃Wαα → 1 as x→∞.

Now take α, β ∈ {1, . . . ,m}, α 6= β and consider the o�-diagonal tau function τUαβ(g);
it is given by the determinant of a matrix Mαβ(g) which coincides with the one involved
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in the de�nition of τU (g) except for the row corresponding to k = d− 1, γ = β which is
replaced by the row 〈cij , ∂d1αgα〉. But since gα = gβ = g̃ we can again collect out of the
determinant the same factor as before, so that τWαβ(g) = det Φij,kγ with

Φij,kγ :=

{
(∂1γ + λi)

k−1φijγ if k 6= d or γ 6= β

(∂1α + λi)
dφijα if k = d and γ = β

(2.109)

This is also a polynomial in x; moreover we can write

(∂1α + λi)
dφijα = (∂1α + λi)

d−1(λiφijα + ∂1αφijα) (2.110)

But now Mαβ has also a row (for k = d − 1, γ = α) whose generic element reads
(λi+∂1α)d−1φijα, and we can subtract this row multiplied by λ1 (say) to the row (2.110)
without altering the determinant, so that

Φij,kγ :=

{
(∂1γ + λi)

k−1φijγ if k 6= d or γ 6= β

(∂1α + λi)
d−1((λi − λ1)φijα + ∂1αφijα) if k = d and γ = β

This means that τWαβ is the determinant of a matrix whose generic entry is equal or of
degree strictly less than the corresponding one on τW ; it follows that the degree of τWαβ

is strictly less than τW , and this (again by Sato's formula) implies that the o�-diagonal
components of ψ̃W tends to zero as x→∞.

2.4.3 Examples

In subsection 2.3.5 we saw that the simplest (non-degenerate) solutions coming from the
1-point Grassmannian Grλ(m) are the ones associated to the a�ne cell determined by
the partition (mm), and that they are completely described by a m×m matrix α. In the
present setting these solutions read simply

τ(h) = det(Xλ − α) ταβ = − cofβ,α(Xλ − α) (2.111)

ψ̃(h, z) = Im − (Xλ − α)−1 1

z − λ
(2.112)

It is then natural to consider the points of GrAd(m) obtained by taking a support con-
sisting of n > 1 points, say Λ = {λ1, . . . , λn}, and choosing for each i ∈ {1, . . . , n} a point
in Grλi(m) lying in that same a�ne cell; these points are the multicomponent analogues
of the �simple points� of subsection 1.4.1.

Let's call α := (α1, . . . , αn) the abstract Grassmannian coordinates of such a point
and WΛ,α the corresponding point in GrAd(m). The image of WΛ,α in Grrat(m) by the
embedding (2.43) is determined as follows: �rst of all notice that the action of the adjoint
involution on the subspace (2.89) is given by

W ∗λ,α = Wλ,−α> (2.113)
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(a direct generalization of formula (1.93)). Following the recipe de�ned in subsection
2.2.2 we see that the point WΛ,α ∈ GrAd(m) corresponds to the subspace of Grrat(m)
consisting of vectors of rational functions with at most simple poles at {λ1, . . . , λn} and
satisfying the following system of mn conditions:

〈f, ωij〉λi = 0 for all 1 ≤ j ≤ m, 1 ≤ i ≤ n (2.114)

where ωij := (δjk
1

z−λi −αkj)k=1...m. The resulting subspaceWΛ,α ∈ Grad(m) is again the

annihilator of a space C ⊆ C (m) generated by n systems of conditions of the form (2.90)
(one for each λi), with coe�cients aijk given by

aijk = −αikj − δjk
∑
`6=i

1

λi − λ`
(2.115)

We conclude that tau function associated to WΛ,α is the determinant of the following
block matrix: 

Yλ1 . . . Yλn
λ1Yλ1 + I . . . λnYλn + I

...
. . .

...

λn−1
1 Yλ1 + (n− 1)λn−2

1 I . . . λn−1
n Yλn + (n− 1)λn−2

n I


where Yλi := Xλi + A>i and Ai := (aijk)j,k=1...m, whereas the o�-diagonal tau functions
ταβ are obtained in the usual manner (i.e., replacing the β-th line of the bottom blocks
with the α-th line of the blocks λni Yλi + nλn−1

i I). Finally, the matrix Baker function
associated to WΛ,α is easily obtained either via Sato's formula or by a direct calculation
starting from the system (2.114).

We now consider in particular the case m = n = 2. Take a subspace W ∈ Grad(2)
with support consisting of the two points {λ, µ} and, for each one of them, a point
in the a�ne cell determined by the partition (22), described respectively by the two
matrices α = (αjk)j,k=1...2 and β = (βjk)j,k=1...2; de�ne �nally the parameters ajk and
bjk according to (2.115) for i = 1, 2. It is convenient to express the resulting tau function
by grouping together the terms according to the powers of δ := (µ− λ)−1:

τ(t̄) = τ0(t̄) + δτ1(t̄) + δ2τ2(t̄)

To shorten the following expressions we introduce the notation

Xγλ := aγγ +Xγλ = aγγ + t
(γ)
1 + 2t

(γ)
2 λ+ 3t

(γ)
3 λ2 + . . .

= aγγ +
1

2
x+ t2λ+

3

2
t3λ

2 + . . .

We then have

τ0 = X1λX2λX1µX2µ − a12a21X1µX2µ − b12b21X1λX2λ + a12a21b12b21
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τ1 = −X2λX1µX2µ + X1λX2λX2µ −X1λX1µX2µ + X1λX2λX1µ+

− a12a21(X1µ + X2µ) + b12b21(X1λ + X2λ)

τ3 = X1µX2µ + X1λX2λ −X1λX2µ −X2λX1µ − (a12 − b12)(a21 − b21)

The reduced Baker function may be written as

ψ̃ = I2 −
1

τ
W λ 1

z − λ
− 1

τ
Wµ 1

z − µ
where

W λ
11 = −X1µX2λX2µ + b12b21X2λ + δ(−2X2λX2µ +X1µX2µ−X1µX2λ− (a12 + b12)b21)+

+ 2δ2(X2µ −X2λ)

W λ
12 = a21X1µX2µ − a21b12b21 + δ(a21(2X2µ + X1µ) + b21X1λ) + 2δ2(a21 − b21)

W λ
21 = a12X1µX2µ − a12b12b21 + δ(a12(2X1µ + X2µ) + b12X2λ) + 2δ2(a12 − b12)

W λ
22 = −X1λX1µX2µ + b12b21X1λ + δ(−2X1λX1µ +X1µX2µ−X1λX2µ− (a21 + b21)b12)+

+ 2δ2(X1µ −X1λ)

and

Wµ
11 = −X1λX2λX2µ + a12a21X2µ + δ(2X2λX2µ + X1λX2µ −X1λX2λ + (a12 + b12)a21)+

+ 2δ2(X2λ −X2µ)

Wµ
12 = b21X1λX2λ − a12a21b21 + δ(−b21(2X2λ + X1λ)− a21X1µ) + 2δ2(b21 − a21)

Wµ
21 = b12X1λX2λ − a12a21b12 + δ(b12(2X1λ + X2λ)− a12X2µ) + 2δ2(b12 − a12)

Wµ
22 = −X1λX1µX2λ + a12a21X1µ + δ(2X1λX1µ + X1µX2λ −X1λX2λ + (a21 + b21)a12)+

+ 2δ2(X1λ −X1µ)

Notice that when α = diag(α11, α22) and β = diag(β11, β22) the tau function factorizes
as τ = τ1τ2 where

τi = XiλXiµ + δ(Xiλ −Xiµ)

This is exactly the tau function of a solution to the scalar (i.e. 1-component) KP equation
coming from a simple point with support {λ, µ} and abstract coordinates (αii, βii). If we
denote by ψ̃(i) the corresponding reduced (scalar) Baker function, we see that the matrix
Baker function may be written as

ψ =

(
ψ̃(1)g̃ 0

0 ψ̃(2)g̃

)
i.e., the matrix Baker function associated to this particular point in Grad(2) is simply
the direct product of two scalar Baker functions (with the same evolution parameter g̃).

These considerations naturally extend to more general (m > 2, n > 2) settings, so
that for example we can combine 3 di�erent solutions of the scalar KP equation with
n-point support in a single solution (again with n-point support) of the 3× 3 matrix KP
equation, and so on.
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2.4.4 The multicomponent KP/CM correspondence

Consider now a solution of the matrix KP equation of the form

u = −2
n∑
i=1

Mi(t
′)

(x− xi(t′))2
(2.116a)

w =
1

2

n∑
i=1

(
Mi(t

′)

(x− xi(t′))3
− 1

2

(
Mi(t

′)ẋi(t
′)

(x− xi(t′))2
+

Ṁi(t
′)

x− xi(t′)

))
(2.116b)

where we are using the notations t′ = {tk}k>1 and ẋi = ∂2xi. If we substitute this
ansatz in the matrix KP equation (2.99) and impose the vanishing of the residue at each
(highest-order) pole we see that it must be

Mk(t
′)2 = Mk(t

′) for all k = 1 . . . n (2.117)

i.e., that the Mk's are projection operators on Cm.
Suppose that these matrices have all rank 1; then for each k we can write them as

Mk(t
′) = ek(t

′)⊗ fk(t′) (2.118)

This de�nes a set of vectors {ek} and a set of covectors {fk}; notice that ek is the unique
eigenvector of Mk associated to the eigenvalue 1. Plugging this expression into (2.117)
we see that 〈fk, ek〉 = 1 for every k.

Now if we de�ne two matrices L, P as
1
2 ẋ1

〈f1,e2〉
x1−x2 . . . 〈f1,en〉

x1−xn
〈f2,e1〉
x2−x1

1
2 ẋ2

. . .
...

...
. . .

. . .
...

〈fn,e1〉
xn−x1 . . . . . . 1

2 ẋn




0 〈f1,e2〉

(x1−x2)2
. . . 〈f1,en〉

(x1−xn)2

〈f2,e1〉
(x2−x1)2

0
. . .

...
...

. . .
. . .

...
〈fn,e1〉

(xn−x1)2
. . . . . . 0

 (2.119)

then it is known (see [13, 24]) that the matrix KP equation (2.99) imply L̇ = [P,L], i.e.
the Lax equation associated to the pair (2.119). But this is exactly a Lax representation
for the multicomponent Calogero-Moser system of Section 2.1, so that the evolution of
the poles xi and of the vectors ek, fk determined by a rank-1 solution of the form (2.116a)
is given by the equations (2.3�2.5). This is the multicomponent version of the KP/CM
correspondence.

We are now able to give a geometrical interpretation for this correspondence analogous
to the one given by Wilson in [43] for the scalar case. Indeed let's denote by Grad(n,m)′

the subset of the m-component adelic Grassmannian Grad(m) made of those subspaces
W whose associated operator QW gives a solution to the matrix KP equation of the form
(2.116a); we then have maps

γn,m : Grad(n,m)′ → C′n,m

de�ned by mapping W to the point (X,Y, V,W ) ∈ C′n,m, where:
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• X = diag(x1(0), . . . , xn(0));

• Y is the �rst matrix of the Lax pair (2.119) with 1
2 ẋi(0) on the diagonal;

• V is the m× n matrix whose rows are the fi(0), and

• W is the n×m matrix whose columns are the ei(0).

At the moment we lack an explicit formula for the map going in the opposite direction
(e.g. for the tau function of the solution associated to a point of C′n,m); in the presence
of such a formula, the bijectivity of the correspondence could probably be proven by
methods similar to those used in subsection 1.4.2.



Appendix A

Symmetric functions

Let's denote by hk (k ≥ 0) the complete homogeneous symmetric functions and by
pk (k ≥ 1) the power sum symmetric functions. Consider the associated generating
functions:

H(z) =
∑
k≥0

hkz
k and P (z) =

∑
k≥1

pkz
k−1

Then we have the fundamental relation (see e.g. [26]):

P (z) =
d

dz
logH(z)

that can be rewritten in the form

H(z) = exp

∫
P (z)

By
∫
P (z) we mean formal integration of power series. Hence we get

1 + h1z + h2z
2 + · · · = exp

(
p1z +

1

2
p2z

2 +
1

3
p3z

3 + . . .

)
(A.1)

This identity gives us a relationship between the two sets of coe�cients that we used in
subsection 1.2.4 to describe the elements of the groups Γ+(R). Remember that a function
g ∈ Γ+(R) may be represented in the two di�erent ways

g(z) = 1 +
∑
k≥1

hkz
k = exp

∑
i≥1

tiz
i (A.2)

By comparing with (A.1) we see that the relationship that holds between the coe�cients
h = {hk}k≥1 and the coe�cients t = {tk}k≥1 is very similar to the one between the
complete homogeneous symmetric functions and the power sum symmetric functions (it
becomes exactly the same putting iti = pi). From this we deduce the relations

h1 = t1

2!h2 = t21 + 2t2

3!h3 = t31 + 6t1t2 + 6t3

4!h4 = t41 + 12t21t2 + 24t1t3 + 12t22 + 24t4

(A.3)
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with corresponding inverses

t1 = h1

2t2 = 2h2 − h2
1

3t3 = 3h3 − 3h1h2 + h3
1

4t4 = 4h4 − 4h1h3 − 2h2
2 + 4h2

1h2 − h4
1

(A.4)

and so on.
Sometimes it is useful to consider the coe�cients associated to g−1 instead; for this

reason we de�ne the two further sequences h− and t− by

g−1 = 1 +
∑
k≥1

h−k z
k = exp

∑
i≥1

t−i z
i (A.5)

Then obviously t− = −t and the relation between h and h− is the one that holds between
mutually inverse power series:

h−k = −
k∑
j=1

hjh
−
k−j (A.6)

Explicitly
h−1 = −h1

h−2 = h2
1 − h2

h−3 = −h3
1 + 2h1h2 − h3

h−4 = h4
1 − 3h2

1h2 + 2h1h3 + h2
2 − h4

(A.7)

These can be combined with the formulas of tables (A.3) and (A.4) to get all the possible
transformations between the four families of coe�cients.

For example if we take g(z) = 1 − z (this function belongs to Γ+(R) for every
R < 1) then we get h = {−1, 0, 0, . . . }, h− = {1, 1, 1, . . . }, t = {−1,−1

2 ,−
1
3 , . . . }

and t− = {1, 1
2 ,

1
3 , . . . }.



Appendix B

Partial fraction decomposition

Let f be a rational function on CP 1. This means that there exist polynomials p and q
with q 6= 0 such that

f(z) =
p(z)

q(z)
for all z ∈ dom f (B.1)

where dom f := { z ∈ CP 1 | q(z) 6= 0 } is the (maximal) domain of de�nition of f . By
the usual division algorithm we can determine a polynomial p∞ (possibly zero) and a
polynomial r with deg r < deg q such that

f(z) = p∞(z) +
r(z)

q(z)
(B.2)

(This is the direct sum decomposition R = P ⊕R− used from Section 1.2 onward.) The
rational function r/q being analytic at λ0 :=∞, it follows that the principal part of f at
that point is s0(z) := p∞(z)− p∞(0); notice that p∞(0) = f(∞).

Now denote by λ1, . . . , λn the (distinct) zeros of q in C and by m1, . . . ,mn the corre-
sponding multiplicities. Let si be the principal part of f at λi:

si(z) =

mi∑
ji=1

aji
(z − λi)ji

(B.3)

Then we have the partial fraction decomposition (see e.g. [17, �4.4]):

r(z)

q(z)
=

n∑
i=1

si(z) (B.4)

Putting all together we have the following:

Theorem B.5. A rational function f is equal to the sum of its principal parts at the

poles (possibly including ∞) and its value at in�nity:

f(z) = f(∞) +
n∑
i=0

si(z) (B.6)

59



60 APPENDIX B. PARTIAL FRACTION DECOMPOSITION

It is now very easy to describe the embedding R → C((z−1)) given by Laurent
expansion at in�nity. We �rst recall that in any ring of formal power series we have

1

1−X
=
∑
k≥0

Xk

and consequently in C((z−1))

1

z − λ
= z−1 1

1− λ
z

=
∑
k≥0

λkz−1−k =
1

z
+
λ

z2
+
λ2

z3
+ . . .

for any λ ∈ C. So if f is a rational function with n simple poles at λ1, . . . , λn we have

f = f(∞) +
n∑
i=1

ai
z − λi

= f(∞) +
∑
k≥0

(
n∑
i=1

aiλ
k
i

)
z−1−k

Consider now a generic pole of order m and the corresponding principal part (B.3). Using
the well-known hypergeometric series expansion (see e.g. [14])

F (a; z) =
∑
k≥0

ak

k!
zk =

1

(1− z)a

(where ak := (a+k+1)!
(a−1)! is the rising factorial power) we can write

1

(z − λ)a
=
∑
k≥0

ak

k!
λkz−a−k

so that equation (B.3) becomes

si(z) =

mi∑
ji=1

aji
∑
k≥0

jki
k!
λki z

−ji−k (B.7)

Then equation (B.6) reads

f(z) = f(∞) +
∑
k≥0

n∑
i=0

mi∑
ji=1

aji
jki
k!
λki z

−ji−k (B.8)

and this gives the afore-mentioned embedding in an explicit form.
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Schubert cells

In this Appendix we recall the classical decomposition of �nite-dimensional Grassman-
nians in Schubert cells. Our approach follows [15,28].

Let Gr(k, V ) denote the Grassmannian of k-dimensional subspaces in a n-dimensional
complex vector space V ; it is a (complex) smooth manifold of dimension k(n− k), con-
nected and compact. If we �x once and for all an ordered basis E = (e1, . . . , en) for
V then every W ∈ Gr(k, V ) may be represented by a k × n matrix of maximum rank
(i.e., rank k) such that its rows are a basis for W ; such a matrix is determined up to
multiplication from the left by a k × k invertible matrix.

Now consider the complete �ag determined by E:

Vi := span{e1, . . . , ei}

For every W ∈ Gr(k, n) we have the non-decreasing sequence of subspaces

0 = W ∩ V0 ⊆W ∩ V1 ⊆ · · · ⊆W ∩ Vn−1 ⊆W ∩ Vn = W

If W is in generic position with respect to E then the intersections W ∩ Vi will be zero
for i ≤ n− k and they will have dimension i− (n− k) henceforth.

Generally, for every W ∈ Gr(k, n) we put di := dim(W ∩ Vi); then we have the
non-decreasing sequence of natural numbers

0 = d0 ≤ d1 ≤ · · · ≤ dn−1 ≤ dn = k

Two consecutive integers in this sequence di�er by at most 1, so it contains exactly k
�jumps�. The Schubert symbol of W is the sequence of k natural numbers for which
there is a jump, i.e. the indices i such that di = di−1 + 1. Clearly Schubert symbols are
increasing sequences of numbers between 1 and n; given any sequence σ = (σ1, . . . , σk) of
this type, the associated Schubert cell Cσ is the set of subspaces W ∈ Gr(k, n) which
have σ as Schubert symbol.

Now take a subspace W ∈ Cσ; we can build a canonical basis for it as follows. By
de�nition of Schubert symbol, W ∩ Vσ1 has dimension 1; let v1 be a generator of this
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space normalized such that 〈v1, eσ1〉 = 1, or in other words

v1 = (∗, . . . , ∗︸ ︷︷ ︸
σ1−1

, 1, 0, . . . , 0)

Then take v2 such that {v1, v2} generates W ∩ Vσ2 , normalized in such a manner that
〈v2, eσ1〉 = 0 and 〈v2, eσ2〉 = 1, i.e.

v2 = (∗, . . . , ∗︸ ︷︷ ︸
σ1−1

, 0, ∗, . . . , ∗︸ ︷︷ ︸
σ2−σ1−1

, 1, 0, . . . , 0)

Continuing the process all the way to vk we obtain a basis for W such that the corre-
sponding representative matrix is

v1
...
vk

 =


∗ · · · ∗ 1 0 · · · 0 0 0 · · ·
∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · ·
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · ·
...

...
...

...
...

...
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · ·


Vice versa, every matrix of this form describes a k-dimensional space that belongs to Cσ.
Now, such a matrix has exactly1

dσ :=
k−1∑
i=0

(k − i)(σi+1 − σi − 1) (C.1)

free elements; we thus have homeomorphisms

Cσ ∼= Cdσ

and it can be shown that the sets Cσ give a cell decomposition for Gr(k, n); it generalizes
the well-known cell structure of projective spaces,

Pn = Cn ∪ Cn−1 ∪ · · · ∪ C1 ∪ C0

to which it reduces for k = 1.
Given a Schubert symbol σ the partition associated to σ is de�ned by

p(σ) := (σk − k, . . . , σ1 − 1) (C.2)

Clearly it is a partition of length not greater than k and whose parts are not greater
than n − k, and the correspondence (C.2) between Schubert symbols and partitions of
this form is bijective. It is not di�cult to show that the number dσ de�ned by (C.1) is
precisely the weight of p(σ), so we conclude that the number of d-dimensional cells in
Gr(k, V ) is exactly equal to the number of partitions of n of length not greater than k
with parts not greater than n− k.

For example let's consider the cell structure of the �rst nontrivial (i.e. not isomor-
phic to a projective space) Grassmannian, Gr(2, 4). The possible Schubert symbols, with
corresponding partitions, are

1Here we assume σ0 = 0.
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d0 d1 d2 d3 d4 σ p(σ) dimCσ
0 0 0 1 2 (34) (22) 4
0 0 1 1 2 (24) (21) 3
0 0 1 2 2 (23) (11) 2
0 1 1 1 2 (14) (2) 2
0 1 1 2 2 (13) (1) 1
0 1 2 2 2 (12) () 0

The cell of maximal dimension C(34) contains exactly the subspaces in generic position
with respect to the chosen basis.
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