
CARVE: Composable Robot Behavior with Verification

Model transformation and correctness proof

The CARVE project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 732410, in the form of financial support to third parties of the

RobMoSys project.

Leader for the deliverable: Università degli studi di Genova (UNIGE)

Document type: Report
Dissemination level: Public
Revision: 1.0
Delivery date 3rd of December 2018

CARVE: Composable Robot Behavior with Verification

Summary

In this report we describe the overall structure of the certified Behavior Tree execution engine and the associated
specification extractor for the NuSMV/OCRA toolchain developed in the context of the CARVE project, as
well as their formal relationship. The main goal of the report is to show that the execution engine and the
specification extractor provide sufficient guarantees insofar as the correctness proof carried out on the extracted
specification maps to the actual execution of Behavior Trees on the execution engine.

D5.1 Model transformation and correctness proof 1/18

CARVE: Composable Robot Behavior with Verification

Contents

1 Introduction 3

2 Operational semantics of Behavior Trees 3
2.1 Description of the BT data type . 3
2.2 Basic operational semantics of BTs . 5
2.3 Stream semantics . 7
2.4 Preemptible semantics . 8

3 From Behavior Trees to Hierarchical Finite State Machines 9
3.1 The MicroSMV language . 9
3.2 Automatic generation of the SMV specification . 11

4 Relationship between the two semantics 13

5 Future developments 17

D5.1 Model transformation and correctness proof 2/18

CARVE: Composable Robot Behavior with Verification

1 Introduction

The main goals of the CARVE project are:

• to propose Behavior Trees (BTs) as tools for modelling composable and reusable behaviors in the robotic
domain;

• to develop the use of formal methods for increasing confidence in the correct execution of BTs.

In CARVE we wish to ensure that the “high level description” of the behavior of a robot given in terms of BTs
is executed correctly. Towards this end we have designed and implemented the following tools:

• an execution engine for BTs, to be integrated into the SmartSoft framework, which implements the
operational semantics defined in the deliverable D3.1. This tool is described in the D4.1 document;

• a specification extractor, i.e. an automatic tool to translate a BT into an equivalent Hierarchical Finite
State Machine (HFSM) whose properties are amenable to verification by formal methods using established
tools. This tool, described in D5.2 document, is based on a formal (operational) semantics for the execution
of BTs — see document D3.2, “Syntax and Semantic of Behavior Trees for Robotics” wherein a translation
from the BT formalism to the classical model of computation provided by HFSMs is given.

The main external tools involved in the process are the Coq proof assistant [3] (with associated program
extraction capabilities), the NuSMV model checker [5] and the OCRA tool for contract refinement analysis [7].

During the development of the project we deemed necessary to introduce two extensions to the standard
BT formalism:

• reset messages, ensuring correct interruption of software components;

• contract annotations, allowing us to express constraints that are assumed to be satisfied for correct
task execution and guarantees that are ensured to be satisfied on successful task completion.

The rest of this report is structured as follows:

• Section 2 describes the formalization of the operational semantics for Behavior Trees on which the certified
interpreter is based.

• Section 3 describes the translation process from Behavior Trees to Hierarchical Finite State Machines,
implicitly expressed as SMV specifications.

• Section 4 describes the relationship between the two semantics.

• In the final section 5 we sketch some directions for future work.

The code described in this report can be found on the public Github repository https://github.com/CARVE-ROBMOSYS/

BTCompiler

2 Operational semantics of Behavior Trees

In this section we describe in detail the implementation of the operational semantics of Behavior Trees in the
Coq proof assistant which underlies the certified interpreter described in the companion document D4.1.

2.1 Description of the BT data type

The first step of the formalization process is the definition of a data type representing Behavior Trees in Gallina
(the specification language used in Coq [4]). In a first phase of the project we proceeded in parallel along two
different routes:

• a first approach using binary trees, i.e. trees having only nodes with binary branching;

• a second approach using trees with arbitrary (but greater than zero) branching.

The first implementation mainly served as a test-bed by presenting all the main difficulties of the formalization
in a simplified setting (e.g. with no mutual inductive definitions needed). The second implementation, however,
should be considered as the “final” one. It matches more closely the usual informal description of Behavior
Trees [2], as well as the corresponding formalization by ALES-UTRC, as detailed in the D3.2 document. In
what follows we shall only describe the second implementation.

To increase abstraction, we found useful to parameterize the modules implementing the BT data type over
the following signature:

D5.1 Model transformation and correctness proof 3/18

https://github.com/CARVE-ROBMOSYS/BTCompiler
https://github.com/CARVE-ROBMOSYS/BTCompiler

CARVE: Composable Robot Behavior with Verification

Module Type BT_SIG.

Parameter skillSet: Set.

Parameter skillName: skillSet -> string.

End BT_SIG.

This signature specifies a set whose members are the basic skills available to the BT designer and a function
mapping each basic skill to its name (which is simply a string). Each skill is assumed to have a different name,
although in the current implementation this constraint is not enforced at the type level.

Notice that these names are also used to build the NuSMV specification corresponding to a given Behavior
Tree, hence they should also qualify as valid SMV identifiers. According to the NuSMV manual [6], this means
that each of these strings may contain any sequence of characters starting with a character in the set {A-Za-z}
and followed by a possibly empty sequence of characters belonging to the set {A-Za-z0-9$#-}. All characters
and case in an identifier are significant.

Another important design decision we had to make regarding the BT data type is the following. A priori,
there are two ways to represent trees with arbitrary branching in Coq:

• As a mutual inductive type: this is the classic definition in terms of trees and forests:

Inductive tree: Set :=

| node: symbol -> forest -> tree

with forest: Set :=

| fnil: forest

| fcons: tree -> forest -> forest.

• As a nested inductive type: this definition uses the (polymorphic) list type from the Coq standard library:

Inductive ntree: Set :=

| leaf: symbol -> ntree

| node: symbol -> list ntree -> ntree.

The upside of using nested induction is that in this case we can use “for free” the various functions and theorems
about the list type which are defined in the Coq standard library. However, working with nested inductive
types is also more involved: for instance Coq has no predefined induction scheme for these types, so that
induction and recursion principles must be specified by hand. We direct the reader to Adam Chlipala’s book
[1, section 3.8] for an in-depth discussion of these points.

Another reason to use mutual induction with a specialized btforest type is that in this way we can enforce
the constraint (explicitly specified in the D3.2 document) according to which a BT inner node always has at
least one child, directly at the type level. This is clearly impossible to do with a nested inductive type, since
regular Coq lists can be empty.

For these reasons we chose to formalize Behavior Trees using a pair of mutual inductive types, called btree

and btforest. Their definition (parameterized on a module X of type BT_SIG) is as follows:

Inductive btree: Set :=

| Skill: X.skillSet -> btree

| TRUE: btree

| Node: nodeKind -> string -> btforest -> btree

| Dec: decKind -> string -> btree -> btree

with btforest: Set :=

| Child: btree -> btforest

| Add: btree -> btforest -> btforest.

Notice how the Child constructor for the btforest type enforces BT forests to always have at least one member.
The various kinds of nodes and decorators are described by the nodeKind and decKind types. These are

again inductively defined, the only nontrivial constructor being the one for Parallel nodes (which takes as a
parameter its threshold):

Inductive nodeKind: Set :=

| Sequence: nodeKind

| Fallback: nodeKind

| Parallel: nat -> nodeKind.

Inductive decKind: Set := Not | IsRunning.

D5.1 Model transformation and correctness proof 4/18

CARVE: Composable Robot Behavior with Verification

Algorithm 1: Pseudocode of a Sequence node with N children

1 for i← 1 to N do
2 childStatus ← Tick(child(i))
3 if childStatus = Running then
4 return Running
5 else if childStatus = Failure then
6 return Failure

7 return Success

2.2 Basic operational semantics of BTs

In the file basic.v we formalize the basic operational semantics for Behavior Trees by defining a function
(written in the Gallina programming language) whose execution reproduces the intended semantics of any given
BT. In other words, we define what is usually called a shallow embedding of the BT language in the type theory
underlying the Coq proof assistant.

We immediately remark that, since Gallina programs are guaranteed to always terminate, this automatically
gives us a proof of termination for the BT execution engine that will be derived from the above definition by
Coq’s program extraction mechanism.

We chose to encapsulate the possible return values of a basic skill in the type return_enum, and to represent
the return value of each skill at a certain instant of time with a term of type skills_input:

Inductive return_enum := Runn | Fail | Succ.

Definition skills_input := X.skillSet -> return_enum.

The heart of the formalization is the function tick, of type btree -> skills_input -> return_enum, defined
by structural induction over the btree type. This function formalizes the execution semantics for Behavior
Trees usually specified in the literature using informal pseudocode (as in the book [2], from which we took the
algorithms listed below).

Let us break down the (somewhat involved) definition of the tick function according to the node type. The
base cases of the recursion are straightforward:

Fixpoint tick (t: btree) (input_f: skills_input) :=

match t with

| Skill s => input_f s

| TRUE => Succ

[...]

end

Let us focus on Sequence nodes. Their execution is usually described in terms of the pseudocode illustrated in
Algorithm 1. This corresponds to the following fragment of the definition of tick:

Fixpoint tick (t: btree) (input_f: skills_input) :=

match t with

[...]

| Node k _ f => match k with

| Sequence => tick_sequence f input_f

[...]

end

with tick_sequence (f: btforest) (input_f: skills_input) :=

match f with

| Child t => tick t input_f

| Add t1 rest => match tick t1 input_f with

| Runn => Runn

| Fail => Fail

| Succ => tick_sequence rest input_f

end

end

Apart from translating the iteration into a recursion, the analogies between the two algorithms are clear.
Fallback nodes are similarly described in terms of Algorithm 2. This translates to the following Coq code

fragment, very similar to the one above:

D5.1 Model transformation and correctness proof 5/18

CARVE: Composable Robot Behavior with Verification

Algorithm 2: Pseudocode of a Fallback node with N children

1 for i← 1 to N do
2 childStatus ← Tick(child(i))
3 if childStatus = Running then
4 return Running
5 else if childStatus = Success then
6 return Success

7 return Failure

Algorithm 3: Pseudocode of a Parallel node with N children and success threshold M

1 for i← 1 to N do
2 childStatus(i) ← Tick(child(i))

3 if Σi:childStatus(i)=Success1 ≥M then
4 return Success
5 else if Σi:childStatus(i)=Failure1 > N −M then
6 return Failure

7 return Running

Fixpoint tick (t: btree) (input_f: skills_input) :=

match t with

[...]

| Node k _ f => match k with

| Fallback => tick_fallback f input_f

[...]

end

with tick_fallback (f: btforest) (input_f: skills_input) :=

match f with

| Child t => tick t input_f

| Add t1 rest => match tick t1 input_f with

| Runn => Runn

| Fail => tick_fallback rest input_f

| Succ => Succ

end

end

Finally, a Parallel node can be described in terms of the slightly more complex Algorithm 3, to be compared
with the following Coq code fragment:

Fixpoint tick (t: btree) (input_f: skills_input) :=

match t with

[...]

| Node k _ f => match k with

| Parallel n =>

let results := tick_all f input_f in

if n <=? (countSucc results) then Succ

else if (len f - n) <? (countFail results) then Fail

else Runn

[...]

end

with tick_all (f: btforest) (input_f: skills_input) :=

match f with

| Child t => cons (tick t input_f) nil

| Add t1 rest => cons (tick t1 input_f) (tick_all rest input_f)

end

where countSucc and countFail are auxiliary functions defined in the obvious manner.

D5.1 Model transformation and correctness proof 6/18

CARVE: Composable Robot Behavior with Verification

Notice that in the above pseudocode the leaves of a parallel node are ticked in order according to their index.
However, this feature is not part of the specification of the node; indeed, in the current implementation of the
tick function the leaves of a parallel node are ticked in reverse order (i.e., starting from the last leaf and and
going towards the first). As a rule, BT designers should not rely on any particular ticking order for Parallel
nodes.

The final part of the tick function definition deals with decorators. Their execution reduces to a straight-
forward case analysis:

Fixpoint tick (t: btree) (input_f: skills_input) :=

match t with

[...]

| Dec k _ t => match k with

| Not =>

match tick t input_f with

| Runn => Runn

| Fail => Succ

| Succ => Fail

end

| IsRunning =>

match tick t input_f with

| Runn => Succ

| Fail => Fail

| Succ => Fail

end

end

end

In the book [2] some other decorators are described, as for instance the max-N-tries or the max-T-sec decorators.
These decorators are different from the preceding ones because they have an internal state. In our formalization,
leaves of a BT cannot have a state; such algorithms must then be implemented as subtrees which manage the
state via some basic skill implementing a suitable interface (for instance communication with a parameter server,
seen as an external resource available to the BT).

2.3 Stream semantics

In the files stream.v and preempt.v we expand the basic approach to a formal operational semantics for BTs
described in the previous subsection along two different directions.

In the first variation, that we call “stream semantics”, the idea is to modify the tick function in order to
make it operate on a stream of return values. This makes it possible to model inside Coq the process of repeated
ticking of a Behavior Tree.

More in detail, the skills_input type is replaced in this setting by the type input_stream defined as
follows:

Definition input_stream := Stream skills_input.

Here we use the implementation of streams in the standard Coq library as a coinductive type (lazy nonempty
list). Then we can define three different ways to tick a BT:

• a (modified) tick function that evaluates a single tick by consuming values from the given input stream
as needed (and discarding the resulting stream);

• a tick2 function that evaluates a single tick by consuming values from the given input stream and returning
the resulting stream (together with the BT output value);

• a reptick function that evaluates a specified number of ticks by consuming values from the given input
stream and returns a list containing the results of the successive tickings.

It is interesting to note that a version of the reptick function with no upper bound on the number of ticks
performed cannot be defined in Gallina (not even as a corecursive function on the input stream), since the
corresponding corecursion would necessarily be unguarded.

D5.1 Model transformation and correctness proof 7/18

CARVE: Composable Robot Behavior with Verification

2.4 Preemptible semantics

In the second variation, called the “preemptible semantics”, we introduce the important notion of reset messages.
In this case, each basic skill is assumed to come with a reset function, to be called every time the skill is not
ticked in a Sequence or Fallback node. This is important, for instance, in robotics applications, in order to
ensure that an action that has been started is not stopped half-way through its execution.

In our formalization, the reset functions for all the basic skills are assumed to be bundled together in the
following function type:

Definition skills_reset := X.skillSet -> bool.

A term of this type maps each basic skill to the return value of the corresponding reset function. This value is
interpreted as follows:

• a return value true means that the reset was successful and the execution can go on normally;

• a return value false means that the reset was not successful and the whole BT should return Failure.

Implementations are free to suppress this additional semantics by making their reset functions always return
true.

The operational semantics itself is then modified as follows:

• the type of the tick function becomes

Fixpoint tick (t: btree) (input_f: skills_input) (reset_f: skills_reset)

including as a third parameter the tuple of reset functions;

• In Sequence and Fallback nodes, as soon as the return value of the node is certain, all the children which
have not been ticked yet are sent a reset message, and the return value of the node is changed according
to whether the reset was successful or not. For instance the Sequence node algorithm becomes

tick_sequence (f: btforest) (input_f: skills_input) (reset_f: skills_reset) :=

match f with

| Child t => tick t input_f reset_f

| Add t1 rest => match tick t1 input_f reset_f with

| Runn => let b := reset_forest rest reset_f in

if b then Runn else Fail

| Fail => let b := reset_forest rest reset_f in

if b then Fail else Fail

| Succ => tick_sequence rest input_f reset_f

end

end

where reset_forest is defined by mutual induction as follows:

Fixpoint reset_bt (t: btree) (reset_f: skills_reset) :=

match t with

| Skill s => reset_f s

| TRUE => true

| Node _ _ f => reset_forest f reset_f

| Dec _ _ t => reset_bt t reset_f

end

with reset_forest (f: btforest) (reset_f: skills_reset) :=

match f with

| Child t => reset_bt t reset_f

| Add t1 rest => let x := reset_bt t1 reset_f in

andb x (reset_forest rest reset_f)

end.

Notice that the reset message is sent independently from the fact that the skill has already been ticked
before or not: as in the basic semantics, the execution has no “memory” of the previous ticks.

D5.1 Model transformation and correctness proof 8/18

CARVE: Composable Robot Behavior with Verification

• In Parallel nodes, as soon as the return value of the node is certain, all the children which have returned
Running are sent (in addition to the previous tick) a reset message:

Fixpoint tick (t: btree) (input_f: skills_input) (reset_f: skills_reset) :=

match t with

[...]

| Node k _ f => match k with

| Parallel n =>

let results := tick_all f input_f reset_f in

if n <=? (countSucc results) then

let b := reset_running f results reset_f in

if b then Succ else Fail

else if (len f - n) <? (countFail results) then

let b := reset_running f results reset_f in

if b then Fail else Fail

else Runn

[...]

end

where the helper procedure reset_running is defined by

Fixpoint reset_running (f: btforest) (l: list return_enum) (reset_f: skills_reset) :=

match f with

| Child t => match hd Fail l with

| Runn => reset_bt t reset_f

| _ => true

end

| Add t1 rest => let x :=

match hd Fail l with

| Runn => reset_bt t1 reset_f

| _ => true

end

in

andb x (reset_running rest (tl l) reset_f)

end.

Notice that every call to reset_running always involves as f and l two lists having the same length, so
that the calls to hd inside reset_running will, in fact, never fail.

3 From Behavior Trees to Hierarchical Finite State Machines

In this section we describe the details of the translation mechanism between Behavior Trees and Hierarchical
Finite State Machines. The tool mkspec described in the D5.2 document is based on this mechanism.

3.1 The MicroSMV language

The formalization described in the previous section has the virtue of being close to the classical, pseudocode-
style informal semantics for BTs already present in the literature. However, in order to bring into the game
formal tools like model checkers and runtime monitor generators, we also need a way to translate a BT into a
HFSM which tracks more closely the formal operational semantics for BTs defined in the D3.2 document.

There are various formalizations of Finite State Machines among Coq’s user-contributed libraries1. However,
it seemed difficult to adapt these implementations to our needs. Moreover, given that ALES-UTRC used the
NuSMV model checker [6] to test their approach to design methodology for BTs, it was quite natural to choose
the same tool as our model checking engine. The logical next step, then, was to leverage the SMV specification
language to (implicitly) describe the HFSMs acting as target for the translation.

Unfortunately, there is currently no way to interface directly the Coq proof assistant with NuSMV. Thus, in
order to be able to formally manipulate SMV specifications, we decided to embed into Coq (a restricted subset

1See for instance coq-automata https://github.com/coq-contribs/automata, p-automata https://github.com/coq-contribs/
pautomata, coq-fairisle https://github.com/coq-contribs/fairisle.

D5.1 Model transformation and correctness proof 9/18

https://github.com/coq-contribs/automata
https://github.com/coq-contribs/pautomata
https://github.com/coq-contribs/pautomata
https://github.com/coq-contribs/fairisle

CARVE: Composable Robot Behavior with Verification

of) the SMV language, in a similar vein to what Johnson-Freyd et al. did for TLA [8]. We call MicroSMV
the resulting language. The SMV constructs to be included in it were specifically chosen in order to cover the
hand-made SMV specifications for BTs provided by ALES-UTRC in the D3.1 document.

Notice that, with this approach, we were able to obtain the code which translates a BT to the corresponding
FSM specification by program extraction. The code obtained in this manner enjoys all the usual guarantees
provided by the use of total functional programming languages (assured termination, etc.).

The MicroSMV language has been briefly described in the D5.2 document. It is a highly simplified
version of SMV, featuring only two basic types (booleans and symbolic enumerations), a reduced set of simple
expressions (detailed below), DEFINE macros, ASSIGN constraints (used in SMV to specify initial states and
transitions), and finally the support for parametric modules.

In the Coq file micro_smv.v we define a number of inductive types representing the (abstract) syntax of
the language. In many cases these definitions were lifted directly from [6, Appendix C], with the appropriate
simplifications. For instance, the type sexp corresponding to MicroSMV simple (or basic) expressions is
defined as follows:

Inductive sexp :=

| BConst: bool_constant -> sexp

| SConst: symbolic_constant -> sexp

| Qual: qualid -> sexp

| Paren: sexp -> sexp

| Neg: sexp -> sexp

| And: sexp -> sexp -> sexp

| Or: sexp -> sexp -> sexp

| Equal: sexp -> sexp -> sexp

| Less: sexp -> sexp -> sexp

| Sum: sexp -> sexp -> sexp

| Count: sexplist -> sexp

| Case: scexp -> sexp

with sexplist :=

| Sexp: sexp -> sexplist

| AddSexp: sexp -> sexplist -> sexplist

with scexp :=

| Cexp: sexp -> sexp -> scexp

| AddCexp: sexp -> sexp -> scexp -> scexp.

Every operator is straightforward except for the Case constructor, which takes a (nonempty) list of pairs of
simple expressions as argument. The idea is that the first element of the pair gives the boolean condition and
the second element gives the value of the expression when the specified condition is true.

Notice that the resulting language has fairly weak typing rules: for instance a count expression expects a
list of boolean values (and counts the number of true instances), but this domain restriction is not imposed in
any way at the syntactic level.

An (abstract) SMV module is represented by a record type of the following form:

Record smv_module: Set :=

{ name: identifier;

params: list identifier;

vars: option varlist;

ivars: option ivarlist;

defs: option deflist;

assigns: option asslist }.

In other words, an smv_module consists of a name, a list of formal parameters (which may be empty), and
optionally:

• a list of (state) variables,

• a list of input variables,

• a list of DEFINE macros,

• a list of ASSIGN constraints.

A MicroSMV specification is simply a list of terms of type smv_module.
The file spec_extr.v contains the code needed to translate an abstract MicroSMV module into a textual

representation (that is, a string) which can be directly feeded into the NuSMV model checker as input.

D5.1 Model transformation and correctness proof 10/18

CARVE: Composable Robot Behavior with Verification

3.2 Automatic generation of the SMV specification

Now let us give a high-level overview of the translation process from Behavior Trees to SMV specifications,
as implemented in the bt2spec.v file. As always in this document, we focus on the arbitrary-branching
implementation, which is contained in the Coq module named BT_gen_spec.

• The recursive structure of Behavior Trees is reflected into the hierarchical structure of the corresponding
SMV specification. In other words, the specification is organized in terms of SMV modules with parameters,
similarly to a class hierarchy in object-oriented languages. See the SMV manual [6, subsections 2.3.10-11]
for more information about SMV modules.

• Each kind of node (leaf nodes, Sequence nodes, etc.) corresponds to a particular SMV module declaration,
and each instance of a given node inside a BT is mapped into an instance of the corresponding module in
the SMV specification.

• The concrete mapping between BT nodes and SMV modules can be summarized as follows.

– A basic skill (Action or Condition nodes in the usual BT jargon) is implemented using the fixed
MicroSMV module bp_skill_autonomous2, which (when translated to concrete SMV syntax) looks
as follows:

MODULE bt_skill()

VAR

output : { none, running, failed, succeeded };

enable : boolean;

IVAR

input : { Runn, Fail, Succ };

ASSIGN

init(output) := none;

next(output) := case

!(enable) : none;

input = Runn : running;

input = Fail : failed;

input = Succ : succeeded;

esac;

– A dummy leaf TRUE is implemented as the fixed MicroSMV module bp_TRUE, whose output is
always succeeded.

Notice that both modules bp_skill_autonomous and bp_TRUE have no formal parameters. This is
a reflection of the fact that they are used to implement the “base cases” of the recursive data type
btree.

– A Sequence node with n children is translated to a MicroSMV module with n parameters and the
following general structure:

MODULE bt_sequence_n(btn, ..., bt1)

VAR

enable : boolean;

DEFINE

output := case

btn.output = running | btn.output = failed : btn.output;
bt(n− 1).output = running | bt(n− 1).output = failed : bt(n− 1).output;
...

bt2.output = running | bt2.output = failed : bt2.output;

TRUE : bt1.output;

esac;

ASSIGN

btn.enable := enable;

bt(n− 1).enable := btn.output = succeeded;

...

bt1.enable := bt2.output = succeeded;

2The reason for the “autonomous” part will be explained below.

D5.1 Model transformation and correctness proof 11/18

CARVE: Composable Robot Behavior with Verification

These modules are generated on demand by the make_sequence function3.

– A Fallback node with n children is translated to a MicroSMV module whose general structure is
similar to the one above, with the obvious changes in the switching logic. These modules are also
generated on demand by the make_fallback function.

– A Parallel node with n children and threshold parameter k is translated to a MicroSMV module
with the following general structure:

MODULE bt_parallelk_n(btn, ..., bt1)

VAR

enable : boolean;

DEFINE

true_output_count := count(btn.output = succeeded, ... , bt1.output = succeeded);

fail_output_count := count(btn.output = failed, ... , bt1.output = failed);

output := case

k < true_output_count + 1 : succeeded;

n < fail_output_count + k : failed;

TRUE : running;

esac;

ASSIGN

btn.enable := enable;

bt(n− 1).enable := enable;

...

bt1.enable := enable;

These modules are generated on demand by the make_parallel function. Notice that the threshold
parameter does not appear as a parameter of the module; instead it is “baked in” directly inside the
switching logic of the module.

– Finally, Decorator nodes are implemented using the fixed MicroSMV modules called bp_not and
bp_isRunning. Both these modules have a single parameter, representing the single child of the node
in the tree.

The entry point to the translation algorithm is provided by the make_spec function:

Definition make_spec (t: btree): list smv_module :=

let needed := addmod t (empty_set modtype) in

let modlist := make_mod_list needed true in

app modlist (bp_tick_generator :: (make_main t "main") :: nil).

The specification is built in three steps:

1. The first step consists of building a list of all the module types needed for translating the given BT. The
module types are elements of the inductive type modtype, defined by

Inductive modtype :=

| Skmod: modtype

| TRUEmod: modtype

| Seqmod: nat -> modtype

| Fbmod: nat -> modtype

| Parmod: nat -> nat -> modtype

| Notmod: modtype

| Runmod: modtype.

The first parameter of the Seqmod, Fbmod and Parmod constructors is simply the number of childen of the
node. The second parameter of Parmod is the threshold of the corresponding Parallel node.

2. In the second step, the make_mod function is recursively applied to each element of the module list, in
order to generate the corresponding smv_module term. make_mod is defined by a simple pattern matching:

3The reader may wonder why the formal parameters were named in “reverse order”, that is starting from btn and decreasing
towards bt1. This was done in order to streamline the recursive generation of the module: indeed in this way the base case for a
recursion over a btforest (which is the rightmost children, always named bt1 in this scheme) coincides with the base case for a
recursion over the type of (positive) natural numbers.

D5.1 Model transformation and correctness proof 12/18

CARVE: Composable Robot Behavior with Verification

Definition make_mod (t: modtype) (aut: bool): smv_module :=

match t with

| Skmod => if aut then bp_skill_autonomous else bp_skill

| TRUEmod => bp_TRUE

| Seqmod l => make_sequence l

| Fbmod l => make_fallback l

| Parmod n l => make_parallel n l

| Notmod => bp_not

| Runmod => bp_isRunning

end.

(see below for the meaning of the aut parameter).

3. In the final step, the list of MicroSMV modules obtained at the previous step is completed with the
addition of the bp_tick_generator and main modules.

The purpose of bp_tick_generator module is simply to send a tick event to the HFSM implementing
the given BT at each time step of the simulation.

MODULE bt_tick_generator(top_level_bt)

ASSIGN

init(top_level_bt.enable) := TRUE;

next(top_level_bt.enable) := !(top_level_bt.output = none);

Notice that the execution of the HFSM implementing a BT is completely synchronous: a tick propagates
from the root to the leaves and generates a return value for the whole tree in a single time step.

Finally, the only job left for the main module is to instantiate the preceding modules according to the
hierarchy derived from the recursive structure of the given BT. The names given to the various instances
of each module are simply the strings contained in the various Node and Dec constructors of the btree

data type (see subsection 2.1).

The algorithm described above produces a standalone SMV specification, which can then be feeded directly
into NuSMV for formal verification purposes. However, by default mkspec will not produce such a specification.
Instead, it will produce an SMV module ready to be interfaced with the OCRA verification tool, as a possible
implementation for the BT_FSM component described in the companion OSS (OCRA System Specification) file.
We direct the reader to the D3.1 and D5.2 document for a description of the role played by OCRA in the
CARVE project.

4 Relationship between the two semantics

In this section we explain how to bridge the gap between the operational semantics of BTs underlying the
certified interpreter (described in section 2) and the operational semantics for the corresponding HFSM which
can be subjected to model checking using NuSMV (described in section 3).

Ideally, the gap could be bridged by developing a mechanical proof inside Coq. Indeed, one can surely
define inside Coq an operational semantics (i.e., a notion of execution) for HFSMs specified in the MicroSMV
language, and then try to formally prove that for any term t of type btree, the result of the execution of the
corresponding HFSM coincides with the result of the function tick applied to t (for the same output values of
the basic skills).

However, such a proof would be rather pointless, since in practice the model checking step we perform is not
done by (the code extracted from) the operational semantics for MicroSMV defined above. Instead, the model
checking is performed by the totally unrelated NuSMV code. This code is not formally certified anyway4, and
so nothing guarantees that it correctly implements the particular operational semantics we defined.

The only way to reconcile the two semantics in a fully formal way would be, actually, to develop a (formally
verified) model checker in Coq and use that model checker to perform validation of (the HFSM equivalent to) a
BT. Obviously this route was out of the question for the CARVE project, at the very least for reasons of time
and manpower needed.

So we shall content ourselves with an informal proof of coherence between the (formal) semantics underlying
the BT interpreter and the (informal) semantics employed by NuSMV for model checking of the corresponding
HFSMs.

4Although it is surely very well tested “on the field” by decades of use in academia and industry.

D5.1 Model transformation and correctness proof 13/18

CARVE: Composable Robot Behavior with Verification

Let us show, then, that the HFSMs obtained by using the mkspec tool really have the same behavior of the
BT execution engine on each given BT. We shall proceed by structural induction on the type of Behavior Trees,
as it was illustrated in subsection 2.1.

Let us start with the base cases of the induction (i.e. the possible leaf nodes of a BT).

• For a TRUE leaf node, the result follows trivially from the fact that both the tick function and the
MicroSMV module bp_TRUE always return success.

• Now let s be a basic skill. Then the result of the tick function is just the returning value of skill s. In
terms of HFSMs, a BT consisting of a single leaf is mapped to to the following SMV specification:

MODULE bt_skill()

VAR

output : { none, running, failed, succeeded };

enable : boolean;

IVAR

input : { Runn, Fail, Succ };

ASSIGN

init(output) := none;

next(output) := case

!(enable) : none;

input = Runn : running;

input = Fail : failed;

input = Succ : succeeded;

esac;

MODULE bt_tick_generator(top_level_bt)

ASSIGN

init(top_level_bt.enable) := TRUE;

next(top_level_bt.enable) := !(top_level_bt.output = none);

MODULE main()

VAR

s : bt_skill;

tick_generator : bt_tick_generator(s);

whose flattened version reads

MODULE main()

VAR

s.output : { none, running, failed, succeeded };

s.enable : boolean;

IVAR

s.input : { Runn, Fail, Succ };

ASSIGN

init(s.output) := none;

next(s.output) := case

!(s.enable) : none;

s.input = Runn : running;

s.input = Fail : failed;

s.input = Succ : succeeded;

esac;

init(s.enable) := TRUE;

next(s.enable) := !(s.output = none);

The execution of this FSM is straightforward: at odd time steps, the variable enable is true and output

is none, whereas at even time steps enable becomes false and output coincides with the skill’s return
value. Overall, the result is obviously consistent with the result value of the tick function.

Now let us go on with the inductive part of the proof. We analyze separately each possible inner node of a BT
and prove that, under the assumption that its children verify the theorem, the same holds for the return value
of that node.

D5.1 Model transformation and correctness proof 14/18

CARVE: Composable Robot Behavior with Verification

• Sequence nodes. For the sake of clarity let us consider a binary sequence node (the argument for longer
sequences is analogous). A BT containing a Sequence node with two children, call them c1 and c2, will
give rise to a specification containing the module

MODULE bt_sequence_2(bt2, bt1)

VAR

enable : boolean;

DEFINE

output := case

bt2.output = running | bt2.output = failed : bt2.output;

TRUE : bt1.output;

esac;

ASSIGN

bt2.enable := enable;

bt1.enable := bt2.output = succeeded;

which is then instantiated in the main module with a variable declaration of the form

seq: bt_sequence_2(c1,c2);

After the flattening step, the resulting FSM is going to contain, among the others, the following declara-
tions:

VAR

c1.output : {none, running, failed, succeeded};

c1.enable : boolean;

c2.output : {none, running, failed, succeeded};

c2.enable : boolean;

seq.enable : boolean;

DEFINE

seq.output := case

(c1.output = running | c1.output = failed) : c1.output;

TRUE : c2.output;

esac;

ASSIGN

c2.enable := c1.output = succeeded;

c1.enable := seq.enable;

init(seq.enable) := TRUE;

next(seq.enable) := !(seq.output = none);

This means that, at a time step when the seq node is enabled, the value of its output will be computed
(using the same algorithm used by the tick function) on the basis of the values of the two variables
c1.output and c2.output. This ensures that the final value of the variable seq.output coincides with
the result of the tick function operating on the same node.

• Fallback nodes. Again, let us focus on the binary case. A generic binary fallback module looks as follows:

MODULE bt_fallback_2(bt2, bt1)

VAR

enable : boolean;

DEFINE

output := case

bt2.output = running | bt2.output = succeeded : bt2.output;

TRUE : bt1.output;

esac;

ASSIGN

bt2.enable := enable;

bt1.enable := bt2.output = failed;

D5.1 Model transformation and correctness proof 15/18

CARVE: Composable Robot Behavior with Verification

which is then instantiated with a declaration of the form

fb: bt_fallback_2(c1,c2);

After the flattening step, the following declarations are obtained:

VAR

c1.output : {none, running, failed, succeeded};

c1.enable : boolean;

c2.output : {none, running, failed, succeeded};

c2.enable : boolean;

fb.enable : boolean;

DEFINE

fb.output := case

(c1.output = running | c1.output = succeeded) : c1.output;

TRUE : c2.output;

esac;

ASSIGN

c2.enable := c1.output = failed;

c1.enable := fb.enable;

init(fb.enable) := TRUE;

next(fb.enable) := !(fb.output = none);

and reasoning similarly to the Sequence case, the same conclusion follows.

• Parallel nodes. Consider now a parallel node with n children and threshold k. The corresponding SMV
module has been shown in subsection 3.2. Once flattened, it gives rise to declarations of the form

VAR

c1.output : {none, running, failed, succeeded};

c1.enable : boolean;

[...]

cn.output : {none, running, failed, succeeded};

cn.enable : boolean;

par.enable : boolean;

DEFINE

par.output := case

k < par.true_output_count + 1 : succeeded;

n < par.fail_output_count + k : failed;

TRUE : running;

esac;

par.fail_output_count := case

cn.output = failed : 1;

TRUE : 0;

esac +

[...] +

case

c1.output = failed : 1;

TRUE : 0;

esac;

par.true_output_count := case

cn.output = succeeded : 1;

TRUE : 0;

esac +

[...] +

case

c1.output = succeeded : 1;

D5.1 Model transformation and correctness proof 16/18

CARVE: Composable Robot Behavior with Verification

TRUE : 0;

esac;

ASSIGN

c1.enable := par.enable;

[...]

cn.enable := par.enable;

init(par.enable) := TRUE;

next(par.enable) := !(par.output = none);

Here all the children are enabled at the same time step, corresponding to the call to tick_all in the
definition of the tick function for Parallel nodes. The various results are then combined using the same
algorithm in both cases, and this guarantees once again that exactly the same result is arrived at.

• Decorator nodes. This case also follows easily by comparing the execution of the fixed modules bp_not and
bp_isRunning with the definition of the tick function on decorator nodes that we showed in subsection
2.2.

Thus we can conclude that the execution of the generated HFSMs faithfully reproduces the execution algorithm
for BTs implemented by the tick function.

5 Future developments

Our formalization of Behavior Trees can be improved in many ways; let us briefly discuss some of the most
important ones.

Using sharper (dependent) types. The current code only uses classical (i.e., non-dependent) polymorphic
typing. In many instances it would have been useful to incorporate at a deeper level the “correct by
definition” philosophy enabled by the use of dependently-typed programs defined inside a proof assistant
[1]. Some examples of these situations are listed below.

• A Parallel node whose parameter (success threshold) has a value greater than the number of its
children is meaningless and should not appear in any well-formed Behavior Tree. Using a dependently-
typed constructor, it is possible to enforce a constraint of the form “threshold ≤ number of children
of the node” directly at the type level, in order to obtain a sharper characterization of the BT data
type. Without this sharpening, for instance, it is impossible to prove that a Parallel node with a
single child (and any positive value for the threshold) is semantically equivalent to the child tree
itself.

• Another possible sharpening has to do with the length function for BT forests. Its return type is
nat, the type of natural numbers, whereas a sharper specification would use the type of positive
natural numbers, since every BT forest has at least one member. This would simplify the definition
of various functions in the file bt2spec.v, by eliminating irrelevant cases (patterns that will never
match).

• As briefly noted at the end of section 2, the implementation of reset_running would also benefit
from a sharper typing for the formal parameters f and l.

After some internal discussion we decided not to go the dependently-typed route for now, leaving the
implementation of sharper specifications to a future extension of this work.

Incorporating nodes with memory. A popular extension to the classic Behavior Tree syntax is provided by
nodes with memory, also known as starred nodes (see e.g. [2, subsection 1.3.2]). For instance, a Sequence
node with memory remembers whether each child has returned Success at the previous tick, and avoids the
re-execution of that child until the whole node reaches a Success or Failure status. This kind of behavior
brings into the game a whole new set of problems, having to do with the necessity of introducing a notion
of state inside the BT execution engine.

In the D3.2b document (addendum to D3.2) the reader can find a proposal for an SMV formalization of
nodes with memory. Integration of such nodes into the BT interpreter requires a significant effort which
could be the target of future work.

Parametric skills. Another useful extension to the basic BT formalism is the possibility of using parametric
skills, that is basic skills accepting one (or more) parameter(s). This extension will be also left to future
developments of this project.

D5.1 Model transformation and correctness proof 17/18

CARVE: Composable Robot Behavior with Verification

References

[1] Chlipala, A., Certified Programming with Dependent Types. https://adam.chlipala.net/cpdt.

[2] Colledanchise, M., and Ögren, P., Behavior Trees in Robotics and AI. https://arxiv.org/abs/1709.
00084

[3] The Coq proof assistant. https://coq.inria.fr/

[4] The Coq Reference Manual. https://coq.inria.fr/distrib/current/refman/

[5] The NuSMV 2.6 model checker. https://nusmv.fbk.eu

[6] Cavada R., Cimatti A., Jochim C. A., Keighren G., Olivetti E., Pistore M., Roveri M. and Tchaltsev A.,
NuSMV 2.6 User Manual, 2010. https://nusmv.fbk.eu

[7] Cimatti A., Dorigatti M. and Tonetta S., OCRA: Othello Contracts Refinement Analysis, Version 1.3.
https://es.fbk.eu/tools/ocra/

[8] Johnson-Freyd, P., Hulette G.C., and Ariola Z. M., Verification by Way of Refinement: A Case Study in
the Use of Coq and TLA in the Design of a Safety Critical System. In Critical Systems: Formal Methods
and Automated Verification. Springer, Cham, 2016. 205-213.

D5.1 Model transformation and correctness proof 18/18

https://adam.chlipala.net/cpdt
https://arxiv.org/abs/1709.00084
https://arxiv.org/abs/1709.00084
https://coq.inria.fr/
https://coq.inria.fr/distrib/current/refman/
https://nusmv.fbk.eu
https://nusmv.fbk.eu
https://es.fbk.eu/tools/ocra/

	Introduction
	Operational semantics of Behavior Trees
	Description of the BT data type
	Basic operational semantics of BTs
	Stream semantics
	Preemptible semantics

	From Behavior Trees to Hierarchical Finite State Machines
	The MicroSMV language
	Automatic generation of the SMV specification

	Relationship between the two semantics
	Future developments

